Limiting factors for low-temperature performance of electrolytes in LiFePO4/Li and graphite/Li half cells

被引:77
作者
Li, Jie [1 ]
Yuan, Chang Fu [1 ]
Guo, Zhi Hong [1 ]
Zhang, Zhi An [1 ]
Lai, Yan Qing [1 ]
Liu, Jin [1 ]
机构
[1] Cent S Univ, Sch Met Sci & Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion battery; Low temperature; Electrolyte; LiBF4; LiPF6; LITHIUM-ION CELLS; ELECTROCHEMICAL IMPEDANCE; CATHODE; BATTERIES; CARBONATE; INSERTION; BEHAVIOR; ANODES;
D O I
10.1016/j.electacta.2011.10.041
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Low-temperature performance of LiBF4 and LiPF6-based electrolytes in LiFePO4/Li and graphite/Li half cells was investigated. In the temperature range from 0 degrees C to -40 degrees C, electrochemical impedance spectroscopy (EIS) results show that the charge-transfer resistance (R-ct) of graphite/Li cell decreases, the R-ct of LiFePO4/Li cell increases, and sum resistance of LiFePO4/Li and graphite/Li cell decreases when replacing LiPF6 with LiBF4. In the temperature range from 25 degrees C to -40 degrees C, energy barrier (W) for Li-ion jump at the solid electrolyte interface (SEI) alters slightly from 16.04 kJ/mol to 13.60 kJ/mol in LiFePO4/Li cells, but declines greatly from 46.47 kJ/mot to 19.81 kJ/mol in graphite/Li cells when using LiBF4 instead of LiPF6, meanwhile, activation energy (Delta G) of electrode reaction is approximately the same (similar to 60 kJ/mol). The above results indicate that the ionic conductivity is the main limiting factor for low-temperature performance of electrolytes in LiFePO4/Li cell, while factors related with electrolyte-interface are more crucial in graphite/Li cell than in LiFePO4/Li cell. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 74
页数:6
相关论文
共 29 条
[1]   Surface characterization of electrodes from high power lithium-ion batteries [J].
Andersson, AM ;
Abraham, DP ;
Haasch, R ;
MacLaren, S ;
Liu, J ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1358-A1369
[2]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[3]   STUDY OF ELECTROCHEMICAL INSERTION REACTION MODEL .1. RESOLUTION FOR A DYNAMIC SMALL-SIGNAL COMMAND [J].
BARRAL, G ;
DIARD, JP ;
MONTELLA, C .
ELECTROCHIMICA ACTA, 1984, 29 (02) :239-246
[4]  
Boukamp B A., 1989, Equivalent Circuit: User's Manual
[5]   The cathode-electrolyte interface in the Li-ion battery [J].
Edström, K ;
Gustafsson, T ;
Thomas, JO .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :397-403
[6]   The limits of low-temperature performance of Li-ion cells [J].
Huang, CK ;
Sakamoto, JS ;
Wolfenstine, J ;
Surampudi, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (08) :2893-2896
[7]   Low-temperature study of lithium-ion cells using a LiySn micro-reference electrode [J].
Jansen, Andrew N. ;
Dees, Dennis W. ;
Abraham, Daniel P. ;
Amine, Khalil ;
Henriksen, Gary L. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :373-379
[8]   Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells [J].
Li, Jie ;
Xie, Keyu ;
Lai, Yanqing ;
Zhang, Zhi'an ;
Li, Fanqun ;
Hao, Xin ;
Chen, Xujie ;
Liu, Yexiang .
JOURNAL OF POWER SOURCES, 2010, 195 (16) :5344-5350
[9]   Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte [J].
Liao, Xiao-Zhen ;
Ma, Zi-Feng ;
Gong, Qiang ;
He, Yu-Shi ;
Pei, Li ;
Zeng, Ling-Jie .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (05) :691-694
[10]   Investigation of solid electrolyte interfacial layer development during continuous cycling using ac impedance spectra and micro-structural analysis [J].
Moss, P. L. ;
Au, G. ;
Plichta, E. J. ;
Zheng, J. P. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :66-71