Fluorescence correlation spectroscopy and its potential for intracellular applications

被引:282
作者
Schwille, P [1 ]
机构
[1] Max Planck Inst Biophys Chem, Expt Biophys Grp, D-37077 Gottingen, Germany
关键词
fluctuations; two-photon excitation; single molecule detection; diffusion; membrane; Green Fluorescent Protein;
D O I
10.1385/CBB:34:3:383
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence correlation spectroscopy (FCS) is a time-averaging fluctuation analysis of small molecular ensembles, combining maximum sensitivity with high statistical confidence. Among a multitude of physical parameters that are, in principle, accessible by FCS, it most conveniently allows to determine local concentrations, mobility coefficients, and characteristic rate constants of fast-reversible and slow-irreversible reactions of fluorescently labeled biomolecules at very low (nanomolar) concentrations, under equilibrium conditions and without physical separation. Its presently most popular instrumentation by confocal-microscope setups allows for a spatial resolution of fractions of femtoliters for the measurement volumes, containing sparse or even single molecules at any time, and encourages the adaptation of the solution-based technique for cellular applications. The scope of this review is thus, to introduce the FCS technique in particular to the reader with biological background, searching for new methods for a precise quantification of physical parameters governing cellular mechanisms and dynamics, especially if high sensitivity and fast dynamic resolution are required. After a short theoretical introduction, examples are given for the so far most important experimental applications, with respect to their implementation in cellular systems. As an interesting alternative to the confocal instrumentation, two-photon excitation will be introduced, offering a number of important advantages especially in cellular systems with high-noise and low-signal levels.
引用
收藏
页码:383 / 408
页数:26
相关论文
共 101 条
[1]   Single molecule fluorescence spectroscopy at ambient temperature [J].
Ambrose, WP ;
Goodwin, PM ;
Jett, JH ;
Van Orden, A ;
Werner, JH ;
Keller, RA .
CHEMICAL REVIEWS, 1999, 99 (10) :2929-2956
[2]  
[Anonymous], 1997, T FLUOR SP
[3]   FLUORESCENCE CORRELATION SPECTROSCOPY AS A PROBE OF MOLECULAR-DYNAMICS [J].
ARAGON, SR ;
PECORA, R .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (04) :1791-1803
[4]   MOBILITY MEASUREMENT BY ANALYSIS OF FLUORESCENCE PHOTOBLEACHING RECOVERY KINETICS [J].
AXELROD, D ;
KOPPEL, DE ;
SCHLESSINGER, J ;
ELSON, E ;
WEBB, WW .
BIOPHYSICAL JOURNAL, 1976, 16 (09) :1055-1069
[5]   2-PHOTON FLUORESCENCE CORRELATION SPECTROSCOPY - METHOD AND APPLICATION TO THE INTRACELLULAR ENVIRONMENT [J].
BERLAND, KM ;
SO, PTC ;
GRATTON, E .
BIOPHYSICAL JOURNAL, 1995, 68 (02) :694-701
[6]  
Berne B.J., 1975, Dynamic Light Scattering
[7]  
BISCHKE J, 1998, FLUORESCENT MICROSCO, V2, P81
[8]   Kinetics of conformational fluctuations in DNA hairpin-loops [J].
Bonnet, G ;
Krichevsky, O ;
Libchaber, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8602-8606
[9]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[10]   Single-molecule identification of Coumarin-120 by time-resolved fluorescence detection: Comparison of one- and two-photon excitation in solution [J].
Brand, L ;
Eggeling, C ;
Zander, C ;
Drexhage, KH ;
Seidel, CAM .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (24) :4313-4321