A hemoglobin from plants homologous to truncated hemoglobins of microorganisms

被引:167
作者
Watts, RA
Hunt, PW
Hvitved, AN
Hargrove, MS
Peacock, WJ [1 ]
Dennis, ES
机构
[1] CSIRO Plant Ind, Canberra, ACT 2601, Australia
[2] Iowa State Univ, Dept Biophys Biochem & Mol Biol, Ames, IA 50010 USA
关键词
D O I
10.1073/pnas.191349198
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have identified a nuclear-encoded Hb from plants (GLB3)that has a central domain similar to the "truncated" Hbs of bacteria, protozoa, and algae. The three-dimensional structure of these Hbs is a 2-on-2 arrangement of alpha -helices, distinct from the 3-on-3 arrangement of the standard globin fold [Pesce, A., Couture, M Dewilde, S., Guertin, M., Yamauchi, K.,Ascenzi, P., Moens, L. & Bolognesi, M. (2000) EMBOJ. 19, 2424-2434]. GLB3-like genes are not found in animals or yeast, but our analysis reveals that they are present in a wide range of Angiosperms and a Bryophyte. Although cyanobacteria and Chlamydomonas have 2-on-2 Hbs (GLBN), GLB3 is more likely related to GLBO-type 2-on-2 Hbs from bacteria. Consequently, GLB3 is unlikely to have arisen from a horizontal transfer between the chloroplast and nuclear genomes. Arabidopsis thaliana GLB3 protein exhibits unusual concentration-independent binding Of O-2 and CO. The absorbance spectrum of deoxy-GLB3 is unique; the protein forms a transient six-coordinate structure after reduction and deoxygenation, which slowly converts to a five-coordinate structure. In A. thaliana, GLB3 is expressed throughout the plant but responds to none of the treatments that induce plant 3-on-3 Hbs. Our analysis of the sequence, ligand interactions, and expression profile of GLB3 indicates that this protein has unique biochemical properties, evolutionary history, and, most likely, a function distinct from those of other plant Hbs.
引用
收藏
页码:10119 / 10124
页数:6
相关论文
共 30 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   DETERMINANTS OF A PROTEIN FOLD - UNIQUE FEATURES OF THE GLOBIN AMINO-ACID-SEQUENCES [J].
BASHFORD, D ;
CHOTHIA, C ;
LESK, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 196 (01) :199-216
[3]   A COOPERATIVE HEMOGLOBIN WITH DIRECTLY COMMUNICATING HEMES - THE SCAPHARCA-INAEQUIVALVIS HOMODIMER [J].
CHIANCONE, E ;
VERZILI, D ;
BOFFI, A ;
ROYER, WE ;
HENDRICKSON, WA .
BIOPHYSICAL CHEMISTRY, 1990, 37 (1-3) :287-292
[4]   NUCLEAR GENES ENCODING CHLOROPLAST HEMOGLOBINS IN THE UNICELLULAR GREEN-ALGA CHLAMYDOMONAS-EUGAMETOS [J].
COUTURE, M ;
CHAMBERLAND, H ;
STPIERRE, B ;
LAFONTAINE, J ;
GUERTIN, M .
MOLECULAR & GENERAL GENETICS, 1994, 243 (02) :185-197
[5]   A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis [J].
Couture, M ;
Yeh, SR ;
Wittenberg, BA ;
Wittenberg, JB ;
Ouellet, Y ;
Rousseau, DL ;
Guertin, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11223-11228
[6]   Purification and spectroscopic characterization of a recombinant chloroplastic hemoglobin from the green unicellular alga Chlamydomonas eugametos [J].
Couture, M ;
Guertin, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 242 (03) :779-787
[7]   Structural investigations of the hemoglobin of the cyanobacterium Synechocystis PCC6803 reveal a unique distal heme pocket [J].
Couture, M ;
Das, TK ;
Savard, PY ;
Ouellet, Y ;
Wittenberg, JB ;
Wittenberg, BA ;
Rousseau, DL ;
Guertin, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (15) :4770-4780
[8]   Ligand binding in the ferric and ferrous states of Paramecium hemoglobin [J].
Das, TK ;
Weber, RE ;
Dewilde, S ;
Wittenberg, JB ;
Wittenberg, BA ;
Yamauchi, K ;
Van Hauwaert, ML ;
Moens, L ;
Rousseau, DL .
BIOCHEMISTRY, 2000, 39 (46) :14330-14340
[9]   REGULATION OF THE ARABIDOPSIS ADH-GENE BY ANAEROBIC AND OTHER ENVIRONMENTAL STRESSES [J].
DOLFERUS, R ;
DEBRUXELLES, G ;
DENNIS, ES ;
PEACOCK, WJ .
ANNALS OF BOTANY, 1994, 74 (03) :301-308
[10]   Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance [J].
Ellis, MH ;
Dennis, ES ;
Peacock, WJ .
PLANT PHYSIOLOGY, 1999, 119 (01) :57-64