Kinetic limit of N-body description of wave-particle self-consistent interaction

被引:25
作者
Firpo, MC [1 ]
Elskens, Y [1 ]
机构
[1] Univ Aix Marseille 1, Ctr St Jerome, Equipe Turbulence Plasma UMR 6633, F-13397 Marseille 20, France
关键词
plasma; kinetic theory; wave-particle interaction; mean-field limit;
D O I
10.1023/B:JOSS.0000026732.51044.87
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A system of N particles xi(N) = (x(1), v(1),..., x(N), v(N)) interacting self-consistently with one wave Z=A exp(i phi) is considered. Given initial data (Z((N))(0), xi(N)(0)), it evolves according to Hamiltonian dynamics to (Z((N))(t), xi(N)(t)). In the limit N --> infinity, this generates a Vlasov-like kinetic equation for the distribution function f(x, v, t): abbreviated as f(t), coupled to the envelope equation for Z: initial data (Z((infinity))(0), f(0)) evolve to (Z((infinity))(t), f(t)). The solution (Z, f) exists and is unique for any initial data with finite energy. Moreover, for any time T>0, given a sequence of initial data with N particles distributed so that the particle distribution f(N)(0) --> f(0) weakly and with Z((N))(0) --> Z(0) as N --> infinity, the states generated by the Hamiltonian dynamics at all times 0 less than or equal to t less than or equal to T are such that (Z((N))(t), f(N)(t)) converges weakly to (Z((infinity))(t), f(t)).
引用
收藏
页码:193 / 209
页数:17
相关论文
共 35 条
[1]   Explicit reduction of N-body dynamics to self-consistent particle-wave interaction [J].
Antoni, M ;
Elskens, Y ;
Escande, DF .
PHYSICS OF PLASMAS, 1998, 5 (04) :841-852
[2]  
ANTONI M, 1993, THESIS U PROVENCE MA
[3]  
ANTONI M, 1996, DYNAMICS TRANSPORT P, P1
[4]   NUMERICAL-SIMULATION OF BUMP-ON-TAIL INSTABILITY WITH SOURCE AND SINK [J].
BERK, HL ;
BREIZMAN, BN ;
PEKKER, M .
PHYSICS OF PLASMAS, 1995, 2 (08) :3007-3016
[5]   2-STAGE ELECTRON ACCELERATION BY SIMULTANEOUS STIMULATED RAMAN BACKWARD AND FORWARD SCATTERING [J].
BERTRAND, P ;
GHIZZO, A ;
KARTTUNEN, SJ ;
PATTIKANGAS, TJH ;
SALOMAA, RRE ;
SHOUCRI, M .
PHYSICS OF PLASMAS, 1995, 2 (08) :3115-3129
[6]   Nonlinear Landau damping [J].
Brodin, G .
PHYSICAL REVIEW LETTERS, 1997, 78 (07) :1263-1266
[7]   AN EXPLICIT SYMPLECTIC INTEGRATION SCHEME FOR PLASMA SIMULATIONS [J].
CARY, JR ;
DOXAS, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 107 (01) :98-104
[8]   ENHANCEMENT OF THE VELOCITY DIFFUSION IN LONGITUDINAL PLASMA TURBULENCE [J].
CARY, JR ;
DOXAS, I ;
ESCANDE, DF ;
VERGA, AD .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07) :2062-2069
[9]  
Cercignani C, 1994, MATH THEORY DILUTE G
[10]  
Chaix P., 1994, Transport, Chaos and Plasma Physics, P370