Implication of the C-terminal region of the α-subunit of voltage-gated sodium channels in fast inactivation

被引:38
作者
Deschênes, I [1 ]
Trottier, E [1 ]
Chahine, M [1 ]
机构
[1] Univ Laval, Dept Med, St Foy, PQ G1K 7P4, Canada
关键词
sodium channel; fast inactivation; human skeletal muscle; human heart; electrophysiology;
D O I
10.1007/s00232-001-0058-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The alpha -subunit of both the human heart (hH1) and human skeletal muscle (hSkM1) sodium channels were expressed in a mammalian expression system. The channels displayed slow (hH1) and fast (hSkM1) current decay kinetics similar to those seen in native tissues. Hence, the aim of this study was to identify the region on the alpha -subunit involved in the differences of these current-decay kinetics. A series of hH1/hSkM1 chimeric sodium channels were constructed with the focus on the C-terminal region. Sodium currents of chimeric channels were recorded using the patch-clamp technique in whole-cell configuration, Chimeras where the C-terminal region had been exchanged between hH1 and hSkM1 revealed that this region contains the elements that cause differences in current decay kinetics between these sodium channel isoforms. Other biophysical characteristics (steady-state activation and inactivation and recovery from inactivation) were similar to the phenotype of the parent channel. This indicates that the C-terminus is exclusively implicated in the differences of current decay kinetics. Several other chimeras were constructed to identify a specific region of the C-terminus causing this difference. Our results showed that the first 100-amino-acid stretch of the C-terminal region contains constituents that could cause the differences in current decay between the heart and skeletal muscle sodium channels.
引用
收藏
页码:103 / 114
页数:12
相关论文
共 41 条
[1]   INACTIVATION OF SODIUM CHANNEL .2. GATING CURRENT EXPERIMENTS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :567-590
[2]   NA+ CHANNELS IN CARDIAC AND NEURONAL CELLS DERIVED FROM A MOUSE EMBRYONAL CARCINOMA CELL-LINE [J].
ARREOLA, J ;
SPIRES, S ;
BEGENISICH, T .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 472 :289-303
[3]   A NEUTRAL AMINO-ACID CHANGE IN SEGMENT-IIS4 DRAMATICALLY ALTERS THE GATING PROPERTIES OF THE VOLTAGE-DEPENDENT SODIUM-CHANNEL [J].
AULD, VJ ;
GOLDIN, AL ;
KRAFTE, DS ;
CATTERALL, WA ;
LESTER, HA ;
DAVIDSON, N ;
DUNN, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (01) :323-327
[4]   MOLECULAR LOCALIZATION OF AN ION-BINDING SITE WITHIN THE PORE OF MAMMALIAN SODIUM-CHANNELS [J].
BACKX, PH ;
YUE, DT ;
LAWRENCE, JH ;
MARBAN, E ;
TOMASELLI, GF .
SCIENCE, 1992, 257 (5067) :248-251
[5]  
Bénitah JP, 1999, J NEUROSCI, V19, P1577
[6]   CELLULAR AND MOLECULAR-BIOLOGY OF VOLTAGE-GATED SODIUM-CHANNELS [J].
CATTERALL, WA .
PHYSIOLOGICAL REVIEWS, 1992, 72 (04) :S15-S48
[7]   Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation [J].
Cha, A ;
Ruben, PC ;
George, AL ;
Fujimoto, E ;
Bezanilla, F .
NEURON, 1999, 22 (01) :73-87
[8]  
CHAHINE M, 1993, BIOPHYS J, V64, pA4
[9]   Electrophysiological characteristics of cloned skeletal and cardiac muscle sodium channels [J].
Chahine, M ;
Deschene, I ;
Chen, LQ ;
Kallen, RG .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1996, 271 (02) :H498-H506
[10]   Electrophysiological characterization of SCN5A mutations causing long QT (E1784K) and Brugada (R1512W and R1432G) syndromes [J].
Deschênes, I ;
Baroudi, G ;
Berthet, M ;
Barde, I ;
Chalvidan, T ;
Denjoy, I ;
Guicheney, P ;
Chahine, M .
CARDIOVASCULAR RESEARCH, 2000, 46 (01) :55-65