Multidrug resistance in Botrytis cinerea associated with decreased accumulation of the azole fungicide oxpoconazole and increased transcription of the ABC transporter gene BcatrD

被引:69
作者
Hayashi, K
Schoonbeek, HJ
Sugiura, H
De Waard, MA
机构
[1] Univ Wageningen & Res Ctr, Lab Phytopathol, NL-6700 EE Wageningen, Netherlands
[2] Ube Ind Ltd, Ube Res Lab, Ube, Yamaguchi, Japan
关键词
D O I
10.1006/pest.2001.2548
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Azole-resistant mutants of Botrytis cinerea have a multidrug resistance phenotype since they exhibit cross-resistance to unrelated chemicals, These mutants also display resistance to the new azole fungicide oxpoconazole. Resistance to oxpoconazole is associated with decreased accumulation of the fungicide, which is the result of energy-dependent efflux mediated by fungicide transporters. The ATP-binding cassette (ABC) transporter BcatrB (B. cinerea ABC transporter B), involved in efflux of phenylpyrrole fungicides, has no major role in efflux of oxpoconazole since accumulation of the fungicide by a replacement mutant of BcatrB showed a transient accumulation pattern similar to that of the wild-type isolate. The putative role of 10 additional ABC and 3 Major facilitator superfamily transporters in efflux of oxpoconazole was investigated by expression analysis of the corresponding genes. The basal transcription level of BcatrD in germlings of B. cinerea was correlated with the resistance level of two azole-resistant mutants. A short treatment of germlings with the azole fungicides oxpoconazole, prochloraz, and tebuconazole enhanced transcript levels of BcatrD in a wild-type isolate. Transcript levels induced by these fungicides in azole-resistant mutants also correlated with resistance levels. We propose that BcatrD is the ABC transporter that plays a role in azole sensitivity and azole resistance of B. cinerea. Expression of BcatrD is also induced by treatment of germlings with the dicarboximide fungicide iprodione, the benzimidazole fungicide carbendazim, and the antibiotic cycloheximide. suggesting that this gene indeed plays a role in multidrug resistance to fungicides. (C) 2001 Academic Press.
引用
收藏
页码:168 / 179
页数:12
相关论文
共 44 条
[1]   The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production [J].
Andrade, AC ;
Van Nistelrooy, JGM ;
Peery, RB ;
Skatrud, PL ;
De Waard, MA .
MOLECULAR AND GENERAL GENETICS, 2000, 263 (06) :966-977
[2]   The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds [J].
Andrade, AC ;
Del Sorbo, G ;
Van Nistelrooy, JGM ;
De Waard, MA .
MICROBIOLOGY-SGM, 2000, 146 :1987-1997
[3]  
ANDRADE AC, 2000, THESIS WAGENINGEN U
[4]  
BALZI E, 1994, J BIOL CHEM, V269, P2206
[5]   VARIATIONS IN PLOIDY AMONG ISOLATES OF BOTRYTIS-CINEREA - IMPLICATIONS FOR GENETIC AND MOLECULAR ANALYSES [J].
BUTTNER, P ;
KOCH, F ;
VOIGT, K ;
QUIDDE, T ;
RISCH, S ;
BLAICH, R ;
BRUCKNER, B ;
TUDZYNSKI, P .
CURRENT GENETICS, 1994, 25 (05) :445-450
[6]   Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana) [J].
Chapeland, F ;
Fritz, R ;
Lanen, C ;
Gredt, M ;
Leroux, P .
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 1999, 64 (02) :85-100
[7]   EVOLUTION OF ATP-BINDING CASSETTE TRANSPORTER GENES [J].
DEAN, M ;
ALLIKMETS, R .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1995, 5 (06) :779-785
[8]   Fungal transporters involved in efflux of natural toxic compounds and fungicides [J].
Del Sorbo, G ;
Schoonbeek, HJ ;
De Waard, MA .
FUNGAL GENETICS AND BIOLOGY, 2000, 30 (01) :1-15
[9]   Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters [J].
Del Sorbo G. ;
Andrade A.C. ;
Van Nistelrooy J.G.M. ;
Van Kan J.A.L. ;
Balzi E. ;
De Waard M.A. .
Molecular and General Genetics MGG, 1997, 254 (4) :417-426
[10]   Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants [J].
DeRisi, J ;
van den Hazel, B ;
Marc, P ;
Balzi, E ;
Brown, P ;
Jacq, C ;
Goffeau, A .
FEBS LETTERS, 2000, 470 (02) :156-160