Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells

被引:50
作者
Bundgaard, Eva [1 ]
Livi, Francesco [1 ]
Hagemann, Ole [1 ]
Carle, Jon E. [1 ]
Helgesen, Martin [1 ]
Heckler, Ilona M. [1 ]
Zawacka, Natalia K. [1 ]
Angmo, Dechan [1 ]
Larsen-Olsen, Thue T. [1 ]
Benatto, Gisele A. dos Reis [1 ]
Roth, Berenger [1 ]
Madsen, Morten V. [1 ]
Andersson, Mats R. [2 ,3 ]
Jorgensen, Mikkel [1 ]
Sondergaard, Roar R. [1 ]
Krebs, Frederik C. [1 ]
机构
[1] Tech Univ Denmark, Dept Energy Convers & Storage, DK-4000 Roskilde, Denmark
[2] Univ S Australia, Ian Wark Res Inst, Mawson Lakes, SA 5059, Australia
[3] Chalmers, Dept Chem & Biol Engn Polymer Technol, S-41296 Gothenburg, Sweden
基金
新加坡国家研究基金会;
关键词
materials screening; polymer materials; polymer solar cells; roll coating; synthesis; BAND-GAP POLYMERS; ENERGY-CONVERSION EFFICIENCY; INDIUM-TIN-OXIDE; CONJUGATED POLYMERS; HIGH-PERFORMANCE; PHOTOVOLTAIC PROPERTIES; SIDE-CHAINS; SEMICONDUCTING POLYMER; ORGANIC PHOTOVOLTAICS; RATIONAL DESIGN;
D O I
10.1002/aenm.201402186
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The results presented demonstrate how the screening of 104 light-absorbing low band gap polymers for suitability in roll coated polymer solar cells can be accomplished through rational synthesis according to a matrix where 8 donor and 13 acceptor units are organized in rows and columns. Synthesis of all the polymers corresponding to all combinations of donor and acceptor units is followed by characterization of all the materials with respect to molecular weight, electrochemical energy levels, band gaps, photochemical stability, carrier mobility, and photovoltaic parameters. The photovoltaic evaluation is carried out with specific reference to scalable manufacture, which includes large area (1 cm(2)), stable inverted device architecture, an indium-tin-oxide-free fully printed flexible front electrode with ZnO/PEDOT:PSS (poly(3,4-ethylenedioxythiophene):polystyrene sulfonate), and a printed silver comb back electrode structure. The matrix organization enables fast identification of active layer materials according to a weighted merit factor that includes more than simply the power conversion efficiency and is used as a method to identify the lead candidates. Based on several characteristics included in the merit factor, it is found that 13 out of the 104 synthesized polymers outperformed poly(3-hexylthiophene) under the chosen processing conditions and thus can be suitable for further development.
引用
收藏
页数:16
相关论文
共 101 条
[1]  
Akiyama S., 2012, POL SOL CELLS ORG SO, Patent No. JP 2012233072 A
[2]   Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene [J].
Al-Ibrahim, M ;
Roth, HK ;
Zhokhavets, U ;
Gobsch, G ;
Sensfuss, S .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 85 (01) :13-20
[3]   Selenophene vs. thiophene in benzothiadiazole-based low energy gap donor-acceptor polymers for photovoltaic applications [J].
Alghamdi, Abdulaziz A. B. ;
Watters, Darren C. ;
Yi, Hunan ;
Al-Faifi, Solyman ;
Almeataq, Mohammed S. ;
Coles, David ;
Kingsley, James ;
Lidzey, David G. ;
Iraqi, Ahmed .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (16) :5165-5171
[4]   A rational method for developing and testing stable flexible indium- and vacuum-free multilayer tandem polymer solar cells comprising up to twelve roll processed layers [J].
Andersen, Thomas R. ;
Dam, Henrik E. ;
Andreasen, Birgitta ;
Hosel, Markus ;
Madsen, Morten V. ;
Gevorgyan, Suren A. ;
Sondergaard, Roar R. ;
Jorgensen, Mikkel ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 120 :735-743
[5]   All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution-Processed Metal Films [J].
Angmo, Dechan ;
Dam, Henrik F. ;
Andersen, Thomas R. ;
Zawacka, Natalia K. ;
Madsen, Morten V. ;
Stubager, Jorgen ;
Livi, Francesco ;
Gupta, Ritu ;
Helgesen, Martin ;
Carle, Jon E. ;
Larsen-Olsen, Thue T. ;
Kulkarni, Giridhar U. ;
Bundgaard, Eva ;
Krebs, Frederik C. .
ENERGY TECHNOLOGY, 2014, 2 (07) :651-659
[6]  
[Anonymous], 2014, Web of Science search: polymer solar cells organic solar cells organic photovoltaics,, Patent No. 102816305
[7]  
Bard AJ, 2001, ELECTROCHEMICAL METH
[8]   Synthesis and characterization of quinoxaline-based polymers for bulk-heterojunction polymer solar cells [J].
Bathula, Chinna ;
Song, Chang Eun ;
Lee, Woo-Hyung ;
Lee, Jaemin ;
Badgujar, Sachin ;
Koti, Rajesh ;
Kang, In-Nam ;
Shin, Won Suk ;
Ahn, Taek ;
Lee, Jong-Cheol ;
Moon, Sang-Jin ;
Lee, Sang Kyu .
THIN SOLID FILMS, 2013, 537 :231-238
[9]   Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells [J].
Bian, Linyi ;
Zhu, Enwei ;
Tang, Jian ;
Tang, Weihua ;
Zhang, Fujun .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (09) :1292-1331
[10]   Poly(diketopyrrolopyrrole-terthiophene) for Ambipolar Logic and Photovoltaics [J].
Bijleveld, Johan C. ;
Zoombelt, Arjan P. ;
Mathijssen, Simon G. J. ;
Wienk, Martijn M. ;
Turbiez, Mathieu ;
de Leeuw, Dago M. ;
Janssen, Rene A. J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (46) :16616-+