The Arabidopsis cold-responsive transcriptome and its regulation by ICE1

被引:587
作者
Lee, BH
Henderson, DA
Zhu, JK [1 ]
机构
[1] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Anim Sci, Tucson, AZ 85721 USA
[3] Univ Calif Riverside, Inst Integrat Genome Biol, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA
关键词
D O I
10.1105/tpc.105.035568
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To understand the gene network controlling tolerance to cold stress, we performed an Arabidopsis thaliana genome transcript expression profile using Affymetrix GeneChips that contain; 24,000 genes. We statistically determined 939 cold-regulated genes with 655 upregulated and 284 downregulated. A large number of early cold-responsive genes encode transcription factors that likely control late-responsive genes, suggesting a multitude of transcriptional cascades. In addition, many genes involved in chromatin level and posttranscriptional regulation were also cold regulated, suggesting their involvement in cold-responsive gene regulation. A number of genes important for the biosynthesis or signaling of plant hormones, such as abscisic acid, gibberellic acid, and auxin, are regulated by cold stress, which is of potential importance in coordinating cold tolerance with growth and development. We compared the cold-responsive transcriptomes of the wild type and inducer of CBF expression 1 (ice1), a mutant defective in an upstream transcription factor required for chilling and freezing tolerance. The transcript levels of many cold-responsive genes were altered in the ice1 mutant not only during cold stress but also before cold treatments. Our study provides a global picture of the Arabidopsis cold-responsive transcriptome and its control by ICE1 and will be valuable for understanding gene regulation under cold stress and the molecular mechanisms of cold tolerance.
引用
收藏
页码:3155 / 3175
页数:21
相关论文
共 117 条
[1]   Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant [J].
Aida, M ;
Ishida, T ;
Fukaki, H ;
Fujisawa, H ;
Tasaka, M .
PLANT CELL, 1997, 9 (06) :841-857
[2]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[3]   Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis [J].
Cheong, YH ;
Chang, HS ;
Gupta, R ;
Wang, X ;
Zhu, T ;
Luan, S .
PLANT PHYSIOLOGY, 2002, 129 (02) :661-677
[4]   ICE1:: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J].
Chinnusamy, V ;
Ohta, M ;
Kanrar, S ;
Lee, BH ;
Hong, XH ;
Agarwal, M ;
Zhu, JK .
GENES & DEVELOPMENT, 2003, 17 (08) :1043-1054
[5]   ABFs, a family of ABA-responsive element binding factors [J].
Choi, HI ;
Hong, JH ;
Ha, JO ;
Kang, JY ;
Kim, SY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) :1723-1730
[6]   Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding [J].
Collinge, M ;
Boller, T .
PLANT MOLECULAR BIOLOGY, 2001, 46 (05) :521-529
[7]   A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis [J].
Cook, D ;
Fowler, S ;
Fiehn, O ;
Thomashow, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (42) :15243-15248
[8]   Histone acetylation: a switch between repressive and permissive chromatin - Second in review series on chromatin dynamics [J].
Eberharter, A ;
Becker, PB .
EMBO REPORTS, 2002, 3 (03) :224-229
[9]  
Efron B., 1993, INTRO BOOTSTRAP, DOI 10.1007/978-1-4899-4541-9
[10]   The WRKY superfamily of plant transcription factors [J].
Eulgem, T ;
Rushton, PJ ;
Robatzek, S ;
Somssich, IE .
TRENDS IN PLANT SCIENCE, 2000, 5 (05) :199-206