Many-body Brillouin-Wigner second-order perturbation theory: A robust and efficient approach to the multireference correlation problem

被引:12
作者
Papp, P.
Mach, P.
Hubac, I.
Wilson, S.
机构
[1] Comenius Univ, Fac Math Phys & Informat, Div Phys Chem, Bratislava 84215, Slovakia
[2] Silesian Univ, Inst Phys, CZ-74601 Opava, Czech Republic
关键词
electron correlation; multireference; perturbation theory; Brillouin-Wigner; second-order;
D O I
10.1002/qua.21514
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The multireference, state-specific, second-order, Brillouin-Wigner perturbation theory is presented as a robust approach to the electron correlation problem for systems demanding the use of a multireference function. A posteriori modifications are made which, in the case of a single reference function, recover the well known formula of second-order many-body perturbation theory (MBPT2), i.e. Moller-Plesset (MP2) theory, and in the multireference case can be shown to be equivalent to state-specific multireference Rayleigh-Schrodinger-like perturbation theory. It is shown that multireference many-body Brillouin-Wigner perturbation theory when restricted to second-order is a true many-body theory, that is, it is a theory, which has the property of extensivity. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:2622 / 2631
页数:10
相关论文
共 39 条
[1]  
[Anonymous], QUANTUM THEORY
[2]   SUR LA THEORIE DES PERTURBATIONS DES ETATS LIES [J].
BLOCH, C .
NUCLEAR PHYSICS, 1958, 6 (03) :329-347
[3]   LINKED-CLUSTER EXPANSIONS FOR NUCLEAR MANY-BODY PROBLEM [J].
BRANDOW, BH .
REVIEWS OF MODERN PHYSICS, 1967, 39 (04) :771-&
[4]   Perturbation problems and self consistent fields. [J].
Brillouin, L .
JOURNAL DE PHYSIQUE ET LE RADIUM, 1932, 3 :373-389
[5]   CONVERGENCE PROPERTIES OF THE EFFECTIVE INTERACTION [J].
ELLIS, PJ ;
ENGELAND, T ;
HJORTHJENSEN, M ;
HOLT, A ;
OSNES, E .
NUCLEAR PHYSICS A, 1994, 573 (02) :216-230
[6]  
Frisch M., 2016, Gaussian, V16
[7]  
Gordon MS, 2005, THEORY AND APPLICATIONS OF COMPUTATIONAL CHEMISTRY: THE FIRST FORTY YEARS, P1167, DOI 10.1016/B978-044451719-7/50084-6
[8]  
Harris F. E, 1992, ALGEBRAIC DIAGRAMMAT
[9]  
HINCHLIFFE A, 2006, SENIOR REPORTER, V4, P470
[10]  
HINCHLIFFE A, 2002, SENIOR REPORTER, V3, P379