A functional on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip

被引:56
作者
Hong, CC [1 ]
Murugesan, S [1 ]
Kim, S [1 ]
Beaucage, G [1 ]
Choi, JW [1 ]
Ahn, CH [1 ]
机构
[1] Univ Cincinnati, Dept Mat Sci & Engn, Dept Elect & Comp Engn & Comp Sci, Microsyst & BioMEMS Lab, Cincinnati, OH 45221 USA
关键词
D O I
10.1039/b306116g
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This paper presents a functional on-chip pressure generator that utilizes chemical energy from a solid chemical propellant to perform fluidic delivery in applications of plastic-based disposable biochips or lab-on-a-chip systems. In this functional on-chip pressure generator, azobis-isobutyronitrile (AIBN) as the solid chemical propellant is deposited on a microheater using a screen-printing technique, which can heat the AIBN at 70degreesC to produce nitrogen gas. The output pressure of nitrogen gas, generated from the solid chemical propellant, is adjustable to a desired pressure by controlling the input power of the heater. Using this chemical energy source, the generated pressure depends on the deposited amount of the solid chemical propellant and the temperature of the microheater. Experimental measurements show that this functional on-chip pressure generator can achieve around 3 000 Pa pressure when 189 mJ of energy is applied to heat the 100 mug of AIBN. This pressure can drive 50 nl of water through a microfluidic channel of 70 mm and cross-sectional area of 100 mum x 50 mum. Due to its compact size, ease of fabrication and integration, high reliability (no moving parts), biologically inert gas output along with functionality of gas generation, this pressure generator will be an excellent pressure source for handling the fluids of disposable lab-on-a-chip, biochemical analysis systems or drug delivery systems.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 18 条
[1]  
AHN CH, 1995, MICRO ELECTRO MECHANICAL SYSTEMS - IEEE PROCEEDINGS, 1995, P408, DOI 10.1109/MEMSYS.1995.472590
[2]   MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition [J].
Hitt, DL ;
Zakrzwski, CM ;
Thomas, MA .
SMART MATERIALS & STRUCTURES, 2001, 10 (06) :1163-1175
[3]   High-impulse, low-power, digital microthrusters using low boiling temperature liquid propellant with high viscosity fluid plug [J].
Kang, TG ;
Kim, SW ;
Cho, YH .
SENSORS AND ACTUATORS A-PHYSICAL, 2002, 97-8 :659-664
[4]   Digital micropropulsion [J].
Lewis, DH ;
Janson, SW ;
Cohen, RB ;
Antonsson, EK .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 80 (02) :143-154
[5]   A high-performance silicon micropump for disposable drug delivery systems [J].
Maillefer, D ;
Gamper, S ;
Frehner, B ;
Balmer, P ;
van Lintel, H ;
Renaud, P .
14TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2001, :413-417
[6]   Development of a model system to study fuel autoxidation in supercritical media:: decomposition kinetics of 2,2′-azobis(isobutyronitrile) in supercritical carbon dioxide [J].
Morris, RE ;
Mera, AE ;
Brady, RF .
FUEL, 2000, 79 (09) :1101-1107
[7]   Vaporizing liquid microthruster [J].
Mukerjee, EV ;
Wallace, AP ;
Yan, KY ;
Howard, DW ;
Smith, RL ;
Collins, SD .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 83 (1-3) :231-236
[8]   Robust design of gas and liquid micropumps [J].
Richter, M ;
Linnemann, R ;
Woias, P .
SENSORS AND ACTUATORS A-PHYSICAL, 1998, 68 (1-3) :480-486
[9]  
Ringuette S, 2001, PROPELL EXPLOS PYROT, V26, P118, DOI 10.1002/1521-4087(200106)26:3<118::AID-PREP118>3.0.CO
[10]  
2-0