Calcium signaling in cardiac ventricular myocytes

被引:128
作者
Bers, DM [1 ]
Guo, T [1 ]
机构
[1] Loyola Univ, Dept Physiol, Maywood, IL 60153 USA
来源
COMMUNICATIVE CARDIAC CELL | 2005年 / 1047卷
关键词
calcium; calmodulin; coupling; dependent protein kinase; excitation-contraction coupling;
D O I
10.1196/annals.1341.008
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Calcium (Ca) is a multifunctional regulator of diverse cellular functions. In cardiac muscle Ca is a direct central mediator of electrical activation, ion channel gating, and excitation-contraction (E-C) coupling that all occur on the millisecond time scale. The key amplification step in E-C coupling is under tight control of very local [Ca]. Ca also directly activates signaling via kinases and phosphatases (e.g., Ca-calmodulin-dependent protein kinase [CaMKII] and calcineurin) that occur over a longer time scale (seconds to minutes), and the co-localization of these Ca-dependent modulators to their targets and to Ca is also critical in distinct signaling pathways. Finally, Ca-dependent signaling is also involved in long-term (minutes to hours/days) alterations in gene expression (or excitation-transcription coupling). These pathways are involved in hypertrophy and heart failure, and they can alter the expression of some of the key Ca regulatory proteins involved in E-C coupling and their regulation by kinases and phosphatases. There may again be physical microenvironments involved in this nuclear transcription, such that they sense a discrete Ca signal that is distinct from that involved in E-C coupling. In this way cells can use Ca signaling in multiple ways that function in spatially and temporally distinct manners.
引用
收藏
页码:86 / 98
页数:13
相关论文
共 90 条
[1]   Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro [J].
Aoki, H ;
Sadoshima, J ;
Izumo, S .
NATURE MEDICINE, 2000, 6 (02) :183-188
[2]   Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor) [J].
Balshaw, DM ;
Xu, L ;
Yamaguchi, N ;
Pasek, DA ;
Meissner, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :20144-20153
[3]   Calcineurin regulates ryanodine receptor/Ca2+-release channels in rat heart [J].
Bandyopadhyay, A ;
Shin, DW ;
Ahn, JO ;
Kim, DH .
BIOCHEMICAL JOURNAL, 2000, 352 :61-70
[4]   Cardiac type 2 inositol 1,4,5-trisphosphate receptor - Interaction and modulation by calcium/calmodulin-dependent protein kinase II [J].
Bare, DJ ;
Kettlun, CS ;
Liang, M ;
Bers, DM ;
Mignery, GA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (16) :15912-15920
[5]   FRACTIONAL SR CA RELEASE IS REGULATED BY TRIGGER CA AND SR CA CONTENT IN CARDIAC MYOCYTES [J].
BASSANI, JWM ;
YUAN, WL ;
BERS, DM .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1995, 268 (05) :C1313-C1319
[6]   CAMKII IS RESPONSIBLE FOR ACTIVITY-DEPENDENT ACCELERATION OF RELAXATION IN RAT VENTRICULAR MYOCYTES [J].
BASSANI, RA ;
MATTIAZZI, A ;
BERS, DM .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1995, 268 (02) :H703-H712
[7]   Alternative splicing modulates the frequency-dependent response of CaMKII to Ca2+ oscillations [J].
Bayer, KU ;
De Koninck, P ;
Schulman, H .
EMBO JOURNAL, 2002, 21 (14) :3590-3597
[8]   Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2 [J].
Berger, I ;
Bieniossek, C ;
Schaffitzel, C ;
Hassler, M ;
Santelli, E ;
Richmond, TJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (20) :17625-17635
[9]  
Berridge MJ, 2003, BIOCHEM SOC T, V31, P930
[10]  
Bers D.M., 2001, Excitation-Contraction Coupling and Cardiac Contractile Force, V2th