A multistate empirical valence bond approach to a polarizable and flexible water model

被引:40
作者
Lefohn, AE
Ovchinnikov, M
Voth, GA
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
[2] Univ Utah, Henry Eyring Ctr Theoret Chem, Salt Lake City, UT 84112 USA
关键词
D O I
10.1021/jp010103j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new polarizable and flexible water potential has been developed based on the multistate empirical valence bond (MS-EVB) method. The model adds a charge-determination step to the simple point charge/flexible (SPC/F) potential. Two models have been developed: one that is polarizable only along the principal axis, and another that is polarizable in both directions within the molecular plane. The two models give nearly identical radial distribution functions (RDF) for the three site-site RDFs in water: oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen. The new model exhibits a liquid structure that is more ordered than SPC/F but is still well matched to experiment. The gas-phase monomer and dimer properties of the polarizable models are much closer to the experimental result than is SPC/F. Experimental condensed phase properties, such as the bond angle, bond length, molecular dipole moment, and total energy, are also reasonably well reproduced. The static dielectric constant and self-diffusion constant of the model with two directions of polarizability are also reasonably accurate. The MS-EVB method is shown to provide a simple approach to including both polarizability and bond flexibility into a water potential.
引用
收藏
页码:6628 / 6637
页数:10
相关论文
共 46 条
[1]  
Allen M. P., 1987, Computer Simulation of Liquids
[2]   Solvation and reorganization energies in polarizable molecular and continuum solvents [J].
Bader, JS ;
Cortis, CM ;
Berne, BJ .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (06) :2372-2387
[3]   THE ABSORPTION SPECTRA OF LIQUID PHASE H2O, HDO AND D2O FROM 0.7 MU-M TO 10 MU-M [J].
BAYLY, JG ;
KARTHA, VB ;
STEVENS, WH .
INFRARED PHYSICS, 1963, 3 (04) :211-222
[4]  
BELLE DV, 1992, J MOL PHYS, V77, P239
[5]  
BENEDICT WS, 1956, J CHEM PHYS, V24, P1139, DOI DOI 10.1063/1.1742731
[6]   A SEMIEMPIRICAL QUANTUM POLARIZATION MODEL FOR WATER [J].
BORGIS, D ;
STAIB, A .
CHEMICAL PHYSICS LETTERS, 1995, 238 (1-3) :187-192
[7]   A THEORY OF THE DIELECTRIC POLARIZATION OF POLAR SUBSTANCES [J].
BUCKINGHAM, AD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 238 (1213) :235-244
[8]   Molecular dynamics simulation study of water near critical conditions. I. Structure and solvation free energetics [J].
Bursulaya, BD ;
Kim, HJ .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (19) :9646-9655
[9]   Spectroscopic and dielectric properties of liquid water: A molecular dynamics simulation study [J].
Bursulaya, BD ;
Kim, HJ .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (12) :4911-4919
[10]   Generalized molecular mechanics including quantum electronic structure variation of polar solvents. II. A molecular dynamics simulation study of water [J].
Bursulaya, BD ;
Jeon, JG ;
Zichi, DA ;
Kim, HJ .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (08) :3286-3295