The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco

被引:618
作者
Aharoni, A
De Vos, CHR
Wein, M
Sun, ZK
Greco, R
Kroon, A
Mol, JNM
O'Connell, AP
机构
[1] Plant Res Int, Business Unit Cell Cybernet, NL-6700 AA Wageningen, Netherlands
[2] Plant Res Int, Business Unit Genom, NL-6700 AA Wageningen, Netherlands
[3] Free Univ Amsterdam, Biocentrum Amsterdam, Inst Mol Biol Sci, Dept Genet, NL-1081 HV Amsterdam, Netherlands
关键词
MYB; transcription factor; repressor; flavonoid; strawberry; ripening;
D O I
10.1046/j.1365-313X.2001.01154.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Fruit ripening is characterized by dramatic changes in gene expression, enzymatic activities and metabolism. Although the process of ripening has been studied extensively, we still lack valuable information on how the numerous metabolic pathways are regulated and co-ordinated. In this paper we describe the characterization of FaMYB1, a ripening regulated strawberry gene member of the MYB family of transcription factors. Flowers of transgenic tobacco lines overexpressing FaMYB1 showed a severe reduction in pigmentation. A reduction in the level of cyanidin 3-rutinoside (an anthocyanin) and of quercetin-glycosides (flavonols) was observed. Expression of late flavonoid biosynthesis genes and their enzyme activities were aversely affected by FaMYB1 overexpression. Two-hybrid assays in yeast showed that FaMYB1 could interact with other known anthocyanin regulators, but it does not act as a transcriptional activator. Interestingly, the C-terminus of FaMYB1 contains the motif pdLNL(D)/(E)Lxi(G)/s. This motif is contained in a region recently proposed to be involved in the repression of transcription by AtMYB4, an Arabidopsis MYB protein. Our results suggest that FaMYB1 may play a key role in regulating the biosynthesis of anthocyanins and flavonols in strawberry. It may act to repress transcription in order to balance the levels of anthocyanin pigments produced at the latter stages of strawberry fruit maturation, and/or to regulate metabolite levels in various branches of the flavonoid biosynthetic pathway.
引用
收藏
页码:319 / 332
页数:14
相关论文
共 45 条
[1]   Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays [J].
Aharoni, A ;
Keizer, LCP ;
Bouwmeester, HJ ;
Sun, ZK ;
Alvarez-Huerta, M ;
Verhoeven, HA ;
Blaas, J ;
van Houwelingen, AMML ;
De Vos, RCH ;
van der Voet, H ;
Jansen, RC ;
Guis, M ;
Mol, J ;
Davis, RW ;
Schena, M ;
van Tunen, AJ ;
O'Connell, AP .
PLANT CELL, 2000, 12 (05) :647-661
[2]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[3]   DIFFERENTIAL EXPRESSION OF 2 MADS BOX GENES IN WILD-TYPE AND MUTANT PETUNIA FLOWERS [J].
ANGENENT, GC ;
BUSSCHER, M ;
FRANKEN, J ;
MOL, JNM ;
VANTUNEN, AJ .
PLANT CELL, 1992, 4 (08) :983-993
[4]   Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J].
Borevitz, JO ;
Xia, YJ ;
Blount, J ;
Dixon, RA ;
Lamb, C .
PLANT CELL, 2000, 12 (12) :2383-2393
[5]   ACTIVITY OF PHENYLALANINE AMMONIA-LYASE (PAL) AND CONCENTRATIONS OF ANTHOCYANINS AND PHENOLICS IN DEVELOPING STRAWBERRY FRUIT [J].
CHENG, GW ;
BREEN, PJ .
JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 1991, 116 (05) :865-869
[6]  
Coffman JA, 1997, DEVELOPMENT, V124, P4717
[7]   The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals [J].
deVetten, N ;
Quattrocchio, F ;
Mol, J ;
Koes, R .
GENES & DEVELOPMENT, 1997, 11 (11) :1422-1434
[8]   Flavonoids and isoflavonoids - a gold mine for metabolic engineering [J].
Dixon, RA ;
Steele, CL .
TRENDS IN PLANT SCIENCE, 1999, 4 (10) :394-400
[9]  
Doyle J. L. ., 1987, FOCUS, V19, P11, DOI DOI 10.2307/2419362
[10]  
ENGELEN FA, 1995, TRANSGENIC RES, V4, P288