First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes

被引:162
作者
Gowtham, S. [1 ,2 ]
Scheicher, Ralph H. [1 ,2 ,3 ]
Pandey, Ravindra [1 ,2 ]
Karna, Shashi P. [4 ]
Ahuja, Rajeev [3 ,5 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Multi Scale Technol Inst, Houghton, MI 49931 USA
[3] Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, S-75121 Uppsala, Sweden
[4] USA, Res Lab, Weapons & Mat Res Directorate, ATTN AMSRD ARL WM, Aberdeen Proving Ground, MD 21005 USA
[5] Royal Inst Technol, Dept Mat & Engn, S-10044 Stockholm, Sweden
关键词
D O I
10.1088/0957-4484/19/12/125701
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the results of our first-principles study based on density functional theory on the interaction of the nucleic acid base molecules adenine ( A), cytosine ( C), guanine ( G), thymine ( T), and uracil ( U), with a single-walled carbon nanotube (CNT). Specifically, the focus is on the physisorption of base molecules on the outer wall of a ( 5, 0) metallic CNT possessing one of the smallest diameters possible. Compared to the case for CNTs with large diameters, the physisorption energy is found to be reduced in the high-curvature case. The base molecules exhibit significantly different interaction strengths and the calculated binding energies follow the hierarchy G > A > T > C > U, which appears to be independent of the tube curvature. The stabilizing factor in the interaction between the base molecule and CNT is dominated by the molecular polarizability that allows a weakly attractive dispersion force to be induced between them. The present study provides an improved understanding of the role of the base sequence in deoxyribonucleic acid ( DNA) or ribonucleic acid ( RNA) in their interactions with carbon nanotubes of varying diameters.
引用
收藏
页数:6
相关论文
共 37 条
[1]   Metallic and semiconducting narrow carbon nanotubes [J].
Cabria, I ;
Mintmire, JW ;
White, CT .
PHYSICAL REVIEW B, 2003, 67 (12) :4
[2]   DNA-functionalized single-walled carbon nanotubes [J].
Dwyer, C ;
Guthold, M ;
Falvo, M ;
Washburn, S ;
Superfine, R ;
Erie, D .
NANOTECHNOLOGY, 2002, 13 (05) :601-604
[3]   DNA-wrapped carbon nanotubes [J].
Enyashin, A. N. ;
Gemming, S. ;
Seifert, G. .
NANOTECHNOLOGY, 2007, 18 (24)
[4]  
Frisch M.J., 2004, Gaussian 03
[5]  
Revision C.02
[6]   Electrostatic scanning force microscopy images of long molecules:: single-walled carbon nanotubes and DNA [J].
Gil, A ;
de Pablo, PJ ;
Colchero, J ;
Gómez-Herrero, J ;
Baró, AM .
NANOTECHNOLOGY, 2002, 13 (03) :309-313
[7]   Physisorption of nucleobases on graphene: Density-functional calculations [J].
Gowtham, S. ;
Scheicher, Ralph H. ;
Ahuja, Rajeev ;
Pandey, Ravindra ;
Karna, Shashi P. .
PHYSICAL REVIEW B, 2007, 76 (03)
[8]   Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes [J].
Heller, DA ;
Jeng, ES ;
Yeung, TK ;
Martinez, BM ;
Moll, AE ;
Gastala, JB ;
Strano, MS .
SCIENCE, 2006, 311 (5760) :508-511
[9]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[10]   The DNA hybridization assay using single-walled carbon nanotubes as ultrasensitive, long-term optical labels [J].
Hwang, Eung-Soo ;
Cao, Chengfan ;
Hong, Sanghyun ;
Jung, Hye-Jin ;
Cha, Chang-Yong ;
Choi, Jae-Boong ;
Kim, Young-Jin ;
Baik, Seunghyun .
NANOTECHNOLOGY, 2006, 17 (14) :3442-3445