Simulation of a semiflexible polymer in a narrow cylindrical pore

被引:43
作者
Bicout, DJ
Burkhardt, TW
机构
[1] Inst Max Von Laue Paul Langevin, Theory Grp, F-38042 Grenoble 9, France
[2] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 29期
关键词
D O I
10.1088/0305-4470/34/29/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The probability that a randomly accelerated particle in two dimensions has not yet left a simply connected domain A after a time t decays as e(-E0t) for long times. The same quantity E-0 also determines the confinement free energy per unit length Deltaf = k(B)T E-0 of a semiflexible polymer in a narrow cylindrical pore with cross section A. From simulations of a randomly accelerated particle we estimate the universal amplitude of Deltaf for both circular and rectangular cross sections.
引用
收藏
页码:5745 / 5750
页数:6
相关论文
共 13 条
[1]  
BANDSCHUH R, 1998, UNPUB
[2]   Absorption of a randomly accelerated particle: gambler's ruin in a different game [J].
Bicout, DJ ;
Burkhardt, TW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (39) :6835-6841
[3]   Semi-flexible polymers with attractive interactions [J].
Bundschuh, R ;
Lässig, M ;
Lipowsky, R .
EUROPEAN PHYSICAL JOURNAL E, 2000, 3 (03) :295-306
[4]   Free energy of a semiflexible polymer in a tube and statistics of a randomly-accelerated particle [J].
Burkhardt, TW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (07) :L167-L172
[5]   CONFINEMENT FREE-ENERGY OF SEMIFLEXIBLE POLYMERS [J].
DIJKSTRA, M ;
FRENKEL, D ;
LEKKERKERKER, HNW .
PHYSICA A, 1993, 193 (3-4) :374-393
[6]  
FEYNMAN RP, 1965, QUANTUM MECH PATH IN
[7]   WIENER INTEGRALS AND MODELS OF STIFF POLYMER CHAINS [J].
FREED, KF .
JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (04) :1453-&
[8]   UNBINDING TRANSITION OF SEMIFLEXIBLE MEMBRANES IN (1+1) DIMENSIONS [J].
GOMPPER, G ;
BURKHARDT, TW .
PHYSICAL REVIEW A, 1989, 40 (10) :6124-6127
[9]   UNBINDING TRANSITIONS OF SEMI-FLEXIBLE POLYMERS [J].
MAGGS, AC ;
HUSE, DA ;
LEIBLER, S .
EUROPHYSICS LETTERS, 1989, 8 (07) :615-620
[10]  
McKean H. P., 1963, J MATH KYOTO U, V2, P227, DOI DOI 10.1215/KJM/1250524936