Scaling properties in off-equilibrium dynamical processes

被引:13
作者
Coniglio, A
Nicodemi, M
机构
[1] Univ Naples Federico II, Dipartimento Fis, INFM, I-80125 Naples, Italy
[2] Ist Nazl Fis Nucl, Sezione Napoli, I-80125 Naples, Italy
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 03期
关键词
D O I
10.1103/PhysRevE.59.2812
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we analyze the consequences of scaling hypotheses on dynamic functions, such as two-time correlations C(t,t'). We show, under general conditions, that C(t,t') must obey the scaling behavior C(t,t') = phi(1)(t)(f(beta))S(beta), where the scaling variable is beta=beta(phi(1)(t')/phi(1)(t)) and phi(1)(t'),phi(1)(t) are two undetermined functions. The presence of a nonconstant exponent f(beta) signals the appearance of multiscaling properties in the dynamics. [S1063-651X(99)15003-7].
引用
收藏
页码:2812 / 2816
页数:5
相关论文
共 34 条
[1]   GROWTH PROBABILITY-DISTRIBUTION IN KINETIC AGGREGATION PROCESSES [J].
AMITRANO, C ;
CONIGLIO, A ;
DILIBERTO, F .
PHYSICAL REVIEW LETTERS, 1986, 57 (08) :1016-1019
[2]  
[Anonymous], ANN REV COMPUTATIONA
[3]   Aging in a model of self-organized criticality [J].
Boettcher, S ;
Paczuski, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (05) :889-892
[4]  
BOUCHAUD JP, 1995, J PHYS I, V5, P265, DOI 10.1051/jp1:1995127
[5]  
BOUCHAUD JP, 1997, SPIN GLASSES RANDOM
[6]  
BOUCHAUD JP, 1992, J PHYS, V2, P705
[7]   THEORY OF PHASE-ORDERING KINETICS [J].
BRAY, AJ .
ADVANCES IN PHYSICS, 1994, 43 (03) :357-459
[8]   MULTIFRACTAL STRUCTURE OF CLUSTERS AND GROWING AGGREGATES [J].
CONIGLIO, A .
PHYSICA A, 1986, 140 (1-2) :51-61
[9]   MULTISCALING AND MULTIFRACTALITY [J].
CONIGLIO, A ;
ZANNETTI, M .
PHYSICA D, 1989, 38 (1-3) :37-40
[10]   MATRIX MODELS AS SOLVABLE GLASS MODELS [J].
CUGLIANDOLO, LF ;
KURCHAN, J ;
PARISI, G ;
RITORT, F .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :1012-1015