Computational theories of object recognition

被引:55
作者
Edelman, Shimon [1 ]
机构
[1] Univ Sussex, Sch Cognit & Comp Sci, Brighton BN1 9QH, E Sussex, England
关键词
D O I
10.1016/S1364-6613(97)01090-5
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
This paper examines four current theoretical approaches to the representation and recognition of visual objects: structural descriptions, geometric constraints, multidimensional feature spaces and shape-space approximation. The strengths and weaknesses of the four theories are considered, with a special focus on their approach to categorization - a computationally challenging task which is not widely addressed in computer vision, where the stress is rather on the generalization of recognition across changes of viewpoint.
引用
收藏
页码:296 / 304
页数:9
相关论文
共 61 条
[41]   VISUAL LEARNING AND RECOGNITION OF 3-D OBJECTS FROM APPEARANCE [J].
MURASE, H ;
NAYAR, SK .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1995, 14 (01) :5-24
[42]  
PINKER S, 1985, VISUAL COGNITION
[43]   COMPUTATIONAL VISION AND REGULARIZATION THEORY [J].
POGGIO, T ;
TORRE, V ;
KOCH, C .
NATURE, 1985, 317 (6035) :314-319
[44]   A NETWORK THAT LEARNS TO RECOGNIZE 3-DIMENSIONAL OBJECTS [J].
POGGIO, T ;
EDELMAN, S .
NATURE, 1990, 343 (6255) :263-266
[45]  
Richards W.A., 1996, Perception as Bayesian inference, P93, DOI [DOI 10.1017/CBO9780511984037.005, 10.1017/cbo9780511984037.005]
[46]  
Riesenhuber M, 1997, ADV NEUR IN, V9, P17
[47]  
Rolls ET, 1996, NATO ADV SCI I A-LIF, V289, P325
[48]  
SCHIELE B, 1996, LECT NOTES COMPUTER, V1, P610
[49]  
SHAPIRA Y, 1991, P IJCAI, P1257
[50]   ALGEBRAIC-FUNCTIONS FOR RECOGNITION [J].
SHASHUA, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (08) :779-789