Efficient trapping of HNO by deoxymyoglobin

被引:87
作者
Sulc, F [1 ]
Immoos, CE [1 ]
Pervitsky, D [1 ]
Farmer, PJ [1 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
关键词
D O I
10.1021/ja0376184
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrosyl hydride, HNO, also commonly termed nitroxyl, is a transient species that has been implicated in the biological activity of nitric oxide, NO. Herein, we report the first generation of a stable HNO-metal complex by direct trapping of free HNO. Deoxymyoglobin (Mb-Fe(II)) rapidly reacts with HNO produced from the decomposition of methylsulfonylhydroxylamine (MSHA) or Angeli's salt (AS) in aqueous solutions from pH 7 to pH 10, forming an adduct, Mb-HNO. The unique H-1 NMR signal of the Fe-bound HNO at 14.8 ppm allows definitive proof of its formation. The generation of Mb-HNO and quantification of various myoglobin byproducts were accomplished by correlation of H-1 NMR, UV-vis, and EPR spectroscopies. Typically, the maximum Mb-HNO yield obtained is 60-80%; competitive side reactions with byproducts as well as the further reactivity of the Mb-HNO decrease the overall yield. At pH 10, the observed rate of Mb-HNO generation by trapping HNO from MSHA is close to that for MSHA decomposition; kinetic simulations give a lower limit to the bimolecular rate of trapping as 1.4 x 10(4) M-1 s(-1). The binding of HNO to deoxymyoglobin is rapid and essentially irreversible, which suggests that the biological activity of nitroxyl may be mediated by its reactivity with ferrous heme proteins such as myoglobin and hemoglobin.
引用
收藏
页码:1096 / 1101
页数:6
相关论文
共 62 条
[1]   Dissimilatory nitrite and nitric oxide reductases [J].
Averill, BA .
CHEMICAL REVIEWS, 1996, 96 (07) :2951-2964
[2]   THE CHEMICAL MECHANISM OF MICROBIAL DENITRIFICATION [J].
AVERILL, BA ;
TIEDJE, JM .
FEBS LETTERS, 1982, 138 (01) :8-12
[3]   ELECTROCATALYTIC REDUCTION OF NITRITE TO AMMONIA BASED ON A WATER-SOLUBLE IRON PORPHYRIN [J].
BARLEY, MH ;
TAKEUCHI, KJ ;
MEYER, TJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (19) :5876-5885
[4]   On the acidity and reactivity of HNO in aqueous solution and biological systems [J].
Bartberger, MD ;
Fukuto, JM ;
Houk, KN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2194-2198
[5]   The reduction potential of nitric oxide (NO) and its importance to NO biochemistry [J].
Bartberger, MD ;
Liu, W ;
Ford, E ;
Miranda, KM ;
Switzer, C ;
Fukuto, JM ;
Farmer, PJ ;
Wink, DA ;
Houk, KN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (17) :10958-10963
[6]   Electrochemical reduction of NO by myoglobin in surfactant film:: Characterization and reactivity of the nitroxyl (NO-) adduct [J].
Bayachou, M ;
Lin, R ;
Cho, W ;
Farmer, PJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (38) :9888-9893
[7]   METMYOGLOBIN AND METHEMOGLOBIN AS EFFICIENT TRAPS FOR NITROSYL HYDRIDE (NITROXYL) IN NEUTRAL AQUEOUS-SOLUTION [J].
BAZYLINSKI, DA ;
HOLLOCHER, TC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (26) :7982-7986
[8]   ON THE REACTION OF TRIOXODINITRATE(II) WITH HEMOGLOBIN AND MYOGLOBIN [J].
BAZYLINSKI, DA ;
GORETSKI, J ;
HOLLOCHER, TC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (26) :7986-7989
[9]   EVIDENCE FROM THE REACTION BETWEEN TRIOXODINITRATE(II) AND (NO)-N-15 THAT TRIOXODINITRATE(II) DECOMPOSES INTO NITROSYL HYDRIDE AND NITRITE IN NEUTRAL AQUEOUS-SOLUTION [J].
BAZYLINSKI, DA ;
HOLLOCHER, TC .
INORGANIC CHEMISTRY, 1985, 24 (25) :4285-4288
[10]   ACUCHEM - A COMPUTER-PROGRAM FOR MODELING COMPLEX CHEMICAL-REACTION SYSTEMS [J].
BRAUN, W ;
HERRON, JT ;
KAHANER, DK .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1988, 20 (01) :51-62