Function and structure of a prokaryotic formylglycine-generating enzyme

被引:80
作者
Carlson, Brian L. [1 ,3 ]
Ballister, Edward R. [2 ,3 ]
Skordalakes, Emmanuel [1 ]
King, David S. [1 ,3 ]
Breidenbach, Mark A. [2 ,3 ]
Gilmore, Sarah A. [1 ,3 ]
Berger, James M. [1 ]
Bertozzi, Carolyn R. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
关键词
D O I
10.1074/jbc.M800217200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Type I sulfatases require an unusual co-or post-translational modification for their activity in hydrolyzing sulfate esters. In eukaryotic sulfatases, an active site cysteine residue is oxidized to the aldehyde-containing C-alpha-formylglycine residue by the formylglycine-generating enzyme (FGE). The machinery responsible for sulfatase activation is poorly understood in prokaryotes. Here we describe the identification of a prokaryotic FGE from Mycobacterium tuberculosis. In addition, we solved the crystal structure of the Streptomyces coelicolor FGE homolog to 2.1 A resolution. The prokaryotic homolog exhibits remarkable structural similarity to human FGE, including the position of catalytic cysteine residues. Both biochemical and structural data indicate the presence of an oxidized cysteine modification in the active site that may be relevant to catalysis. In addition, we generated a mutant M. tuberculosis strain lacking FGE. Although global sulfatase activity was reduced in the mutant, a significant amount of residual sulfatase activity suggests the presence of FGE-independent sulfatases in this organism.
引用
收藏
页码:20117 / 20125
页数:9
相关论文
共 42 条
[1]  
ALTSCHUL SF, 1997, NUCLEIC ACIDS RES, V25, P3402
[2]   A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes [J].
Berteau, Olivier ;
Guillot, Alain ;
Benjdia, Alhosna ;
Rabot, Sylvie .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (32) :22464-22470
[3]   Substrate recognition strategy for botulinum neurotoxin serotype A [J].
Breidenbach, MA ;
Brunger, AT .
NATURE, 2004, 432 (7019) :925-929
[4]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[5]   Introducing genetically encoded aldehydes into proteins [J].
Carrico, Isaac S. ;
Carlson, Brian L. ;
Bertozzi, Carolyn R. .
NATURE CHEMICAL BIOLOGY, 2007, 3 (06) :321-322
[6]   The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases [J].
Cosma, MP ;
Pepe, S ;
Annunziata, I ;
Newbold, RF ;
Grompe, M ;
Parenti, G ;
Ballabio, A .
CELL, 2003, 113 (04) :445-456
[7]   Crystal structure of human pFGE, the paralog of the Cα-formylglycine-generating enzyme [J].
Dickmanns, A ;
Schmidt, B ;
Rudolph, MG ;
Mariappan, M ;
Dierks, T ;
von Figura, K ;
Ficner, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (15) :15180-15187
[8]   Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme [J].
Dierks, T ;
Dickmanns, A ;
Preusser-Kunze, A ;
Schmidt, B ;
Mariappan, M ;
von Figura, K ;
Ficner, R ;
Rudolph, MG .
CELL, 2005, 121 (04) :541-552
[9]   Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases [J].
Dierks, T ;
Lecca, MR ;
Schlotterhose, P ;
Schmidt, B ;
von Figura, K .
EMBO JOURNAL, 1999, 18 (08) :2084-2091
[10]   Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme [J].
Dierks, T ;
Schmidt, B ;
Borissenko, LV ;
Peng, JH ;
Preusser, A ;
Mariappan, M ;
von Figura, K .
CELL, 2003, 113 (04) :435-444