Non-orthogonal orbitals for localized electrons III. Application to periodic one dimensional lattices

被引:1
作者
Bignonneau, G [1 ]
Fritsch, A [1 ]
Ducasse, L [1 ]
机构
[1] Univ Bordeaux 1, CNRS, UMR 5803, Lab Physicochim Mol, F-33405 Talence, France
关键词
spin coupled; valence bond; Pariser-Parr-Pople; effective spin hamiltonian; Heisenberg model; magnetic exchange integrals;
D O I
10.1016/S0301-0104(01)00316-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new hybrid method associating an effective spin hamiltonian with an approximate spin function is applied to an infinite s = 1/2 magnetic chain. The effective spin hamiltonian is derived from the single configuration spin-coupled valence bond wave function built upon weakly overlapping non-orthogonal orbitals. The approximate spin function gives a zeroth order description of the short range spin correlation while insuring a proper translational symmetry. The variationally optimized magnetic coupling integrals are extracted using the long range Pariser-Parr-Pople model and the influence of the exchange and Coulomb interactions cut off is shown. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:107 / 124
页数:18
相关论文
共 27 条
[1]  
Becker KW, 1998, MOL PHYS, V94, P217, DOI 10.1080/00268979809482310
[2]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[3]   Non-orthogonal orbitals for localized electrons - II. Variational optimization based on an effective spin hamiltonian [J].
Bignonneau, G ;
Fritsch, A ;
Ducasse, L .
CHEMICAL PHYSICS, 1999, 242 (03) :301-318
[4]   APPLICATIONS OF SPIN-COUPLED VALENCE BOND THEORY [J].
COOPER, DL ;
GERRATT, J ;
RAIMONDI, M .
CHEMICAL REVIEWS, 1991, 91 (05) :929-964
[5]  
Cullum J. K., 1985, LANCZOS ALGORITHMS L
[6]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[7]  
DIXON LCW, 1972, NONLINEAR OPTIMISATI
[8]   Approximate size-consistent treatments of Heisenberg Hamiltonians for large systems [J].
Guihery, N ;
BenAmor, N ;
Maynau, D ;
Malrieu, JP .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (10) :3701-3708
[9]  
HEISENBERG W, 1926, Z PHYS, V38, P441