Analysis of a Dengue disease transmission model

被引:359
作者
Esteva, L [1 ]
Vargas, C
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
[2] Inst Politecn Nacl, CINVESTAV, Dept Matemat, Mexico City 07000, DF, Mexico
关键词
Dengue disease; endemic equilibrium; global stability; competitive systems; threshold number;
D O I
10.1016/S0025-5564(98)10003-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A model for the transmission of dengue fever in a constant human population and variable vector population is discussed. A complete global analysis is given, which uses the results of the theory of competitive systems and stability of periodic orbits, to establish the global stability of the endemic equilibrium. The control measures of the vector population are discussed in terms of the threshold condition, which governs the existence and stability of the endemic equilibrium. (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:131 / 151
页数:21
相关论文
共 25 条
[1]  
[Anonymous], 1995, MATH POPULATION DYNA
[2]  
Bailey N. T. J., 1975, The mathematical theory of infectious diseases and its applications, V2nd
[3]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[4]  
Capasso V, 1993, MATH STRUCTURE EPIDE
[5]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365
[6]  
DIETZ K, 1974, P SOC IND APPL MATH, P104
[7]  
ESTEVA L, 1997, THESIS I POLTECNICO
[8]   THE IMPACT OF SEQUENTIAL ULTRA-LOW VOLUME GROUND AEROSOL APPLICATIONS OF MALATHION ON THE POPULATION-DYNAMICS OF AEDES-AEGYPTI (L) [J].
FOCKS, DA ;
KLOTER, KO ;
CARMICHAEL, GT .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 1987, 36 (03) :639-647
[9]  
GALVAN JFM, 1994, MANUAL VIGILANCIA EP
[10]  
GUBLER DJ, 1986, ARBOVIRUS EPIDEMIOLO, V2, P213