Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2

被引:274
作者
Sun, Zheng
Zhang, Shirley
Chan, Jefferson Y.
Zhang, Donna D.
机构
[1] Univ Arizona, Coll Pharm, Dept Pharmacol & Toxicol, Tucson, AZ 85721 USA
[2] Univ Calif Irvine, Dept Pathol, Irvine, CA 92717 USA
关键词
D O I
10.1128/MCB.00630-07
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transcription factor Nrf2 regulates cellular redox homeostasis. Under basal conditions, Keap1 recruits Nrf2 into the Cul3-containing E3 ubiquitin ligase complex for ubiquitin conjugation and subsequent proteasomal degradation. Oxidative stress triggers activation of Nrf2 through inhibition of E3 ubiquitin ligase activity, resulting in increased levels of Nrf2 and transcriptional activation of Nrf2-dependent genes. In this study, we identify Keap1 as a key postinduction repressor of Nrf2 and demonstrate that a nuclear export sequence (NES) in Keap1 is required for termination of Nrf2-antioxidant response element (ARE) signaling by escorting nuclear export of Nrf2. We provide evidence that ubiquitination of Nrf2 is carried out in the cytosol. Furthermore, we show that Keapl nuclear translocation is independent of Nrf2 and the Nrf2-Keap1 complex does not bind the ARE. Collectively, our results suggest the following mechanism of postinduction repression: upon recovery of cellular redox homeostasis, Keapl translocates into the nucleus to dissociate Nrf2 from the ARE. The Nrf2-Keap1 complex is then transported out of the nucleus by the NES in Keapl. Once in the cytoplasm, the Keap1-Nrf2 complex associates with the E3 ubiquitin ligase, resulting in degradation of Nrf2 and termination of the Nrf2 signaling pathway. Hence, postinduction repression of the Nrf2-mediated antioxidant response is controlled by the nuclear export function of Keapl in alliance with the cytoplasmic ubiquitination and degradation machinery.
引用
收藏
页码:6334 / 6349
页数:16
相关论文
共 49 条
  • [1] Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene
    Alam, J
    Stewart, D
    Touchard, C
    Boinapally, S
    Choi, AMK
    Cook, JL
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) : 26071 - 26078
  • [2] Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust
    Aoki, Y
    Sato, H
    Nishimura, N
    Takahashi, S
    Itoh, K
    Yamamoto, M
    [J]. TOXICOLOGY AND APPLIED PHARMACOLOGY, 2001, 173 (03) : 154 - 160
  • [3] An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen
    Chan, KM
    Han, XD
    Kan, YW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) : 4611 - 4616
  • [4] Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival
    Cullinan, SB
    Zhang, D
    Hannink, M
    Arvisais, E
    Kaufman, RJ
    Diehl, JA
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (20) : 7198 - 7209
  • [5] The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase
    Cullinan, SB
    Gordan, JD
    Jin, JO
    Harper, JW
    Diehl, JA
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (19) : 8477 - 8486
  • [6] Regulation of gene expression by reactive oxygen
    Dalton, TD
    Shertzer, HG
    Puga, A
    [J]. ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 : 67 - 101
  • [7] Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants
    Dinkova-Kostova, AT
    Holtzclaw, WD
    Cole, RN
    Itoh, K
    Wakabayashi, N
    Katoh, Y
    Yamamoto, M
    Talalay, P
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (18) : 11908 - 11913
  • [8] Modifying specific cysteines of the electrophile-sensing human Keap1 disrupt binding to the protein is insufficient to Nrf2 domain Neh2
    Eggler, AL
    Liu, GW
    Pezzuto, JM
    van Breemen, RB
    Mesecar, AD
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (29) : 10070 - 10075
  • [9] High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes
    Enomoto, A
    Itoh, K
    Nagayoshi, E
    Haruta, J
    Kimura, T
    O'Connor, T
    Harada, T
    Yamamoto, M
    [J]. TOXICOLOGICAL SCIENCES, 2001, 59 (01) : 169 - 177
  • [10] BTB protein keap1 targets antioxidant transcription factor nrf2 for ubiquitination by the cullin 3-Roc1 ligase
    Furukawa, M
    Xiong, Y
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (01) : 162 - 171