Support vector machine: A tool for mapping mineral prospectivity

被引:369
作者
Zuo, Renguang [1 ]
Carranza, Emmanuel John M. [2 ]
机构
[1] China Univ Geosci, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
[2] Univ Twente, Dept Earth Syst Anal, Fac Geoinformat Sci & Earth Observat ITC, NL-7500 AE Enschede, Netherlands
基金
中国国家自然科学基金;
关键词
Supervised learning algorithms; Kernel functions; Weights-of-evidence; Turbidite-hosted Au; Meguma Terrain; DISTRICT;
D O I
10.1016/j.cageo.2010.09.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this contribution, we describe an application of support vector machine (SVM), a supervised learning algorithm, to mineral prospectivity mapping. The free R package e1071 is used to construct a SVM with sigmoid kernel function to map prospectivity for Au deposits in western Meguma Terrain of Nova Scotia (Canada). The SVM classification accuracies of 'deposit' are 100%, and the SVM classification accuracies of the 'non-deposit' are greater than 85%. The SVM classifications of mineral prospectivity have 5-9% lower total errors, 13-14% higher false-positive errors and 25-30% lower false-negative errors compared to those of the WofE prediction. The prospective target areas predicted by both SVM and WofE reflect, nonetheless, controls of Au deposit occurrence in the study area by NE-SW trending anticlines and contact zones between Goldenville and Halifax Formations. The results of the study indicate the usefulness of SVM as a tool for predictive mapping of mineral prospectivity. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1967 / 1975
页数:9
相关论文
共 43 条
[1]  
Agterberg F. P., 1999, P 28 INT S APPL COMP, V483, P490
[2]   COMPUTER-PROGRAMS FOR MINERAL EXPLORATION [J].
AGTERBERG, FP .
SCIENCE, 1989, 245 (4913) :76-81
[3]  
AN P, 1992, P INT GEOSC REM SENS
[4]  
[Anonymous], E1071 MISCELLANEOUS
[5]  
[Anonymous], 2003, NAT RESOURC RES
[6]  
*AV GEOS, 2006, 01221 AV GEOS
[7]  
BONHAMCARTER CF, 1989, SURVEY, V89, P171
[8]  
BONHAMCARTER GF, 1994, GEOGRAPNIC INFORM SY
[9]  
Boots B.N., 1988, SAGE U SCI GEOGRAPHY, V8
[10]   Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping [J].
Carranza, E. J. M. ;
Hale, M. ;
Faassen, C. .
ORE GEOLOGY REVIEWS, 2008, 33 (3-4) :536-558