Design and implementation of a series voltage sag compensator under practical utility conditions

被引:64
作者
Cheng, PT [1 ]
Huang, CC
Pan, CC
Bhattacharya, S
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
[2] Coretron Corp, Hsinchu 300, Taiwan
[3] Taiwan Salt Ind Corp, Miaoli 357, Taiwan
[4] Siemens Power Transmiss & Distribut, FACTS & Power Qual Div, Raleigh, NC 27626 USA
关键词
capacitor switching transients; dynamic voltage restorer; power quality; voltage sag;
D O I
10.1109/TIA.2003.811780
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Voltage sags have become one of the most important power quality concerns in recent years. According to survey results across the U.S., voltage sags and short-duration power outages account for 92% of power quality problems encountered by industrial customers. Voltage sags often cause undervoltage faults in various sensitive loads and subsequently interrupt the manufacturing processes. Such interruptions often inflict severe losses for industries. In Taiwan, R.O.C., most high-tech manufacturers use uninterruptible power supplies to avoid interruptions, but the cost effectiveness of such an approach remains unclear. As the utility grid continues to improve the reliability of electric power, the inverter-based voltage sag compensator has become a viable solution to prevent production interruptions resulting from voltage sags. The existing sag compensation systems accomplish a fast response within a small fraction of a fundamental cycle by tracking the line voltages closely, and switch on the compensator whenever the voltage waveforms deviate from the normal values. However, the utility voltages often contain transient spikes with amplitudes up to 200% resulting from switching of power-factor-correction capacitors, circuit breakers switchings, lightning strikes, and so on. Such transient disturbances may trigger the sag compensator into operation if its controller is very sensitive. The switching frequency of the sag compensator inverter is inadequate to compensate the narrow pulses of voltage spikes. Furthermore, the power semiconductor devices (like insulated gate bipolar transistors)of the inverter may also be damaged due to overvoltage by the surges. In this paper, a, brief overview of power quality issues of a high-tech industry park in Taiwan will be provided to validate the need for ride-through technologies. A synchronous-reference-frame-based controller for the inverter-based voltage sa g compensator, is also presented. A sag detection mechanism is included in the controller for correct and prompt identification of voltage sags. Disturbances like voltage spikes are attenuated to avoid any false triggering of the compensator. The overall system responds to voltage sags and restores the voltage back to balanced 1.0 pu for critical loads within one-eighth to one-fourth of a cycle, which meet the requirement of industry standards like the SEMI-F47 standard. Simulation and laboratory test results are presented to verify the functionality of the proposed system.
引用
收藏
页码:844 / 853
页数:10
相关论文
共 24 条
[1]   Evaluating capacitor-switching devices for preventing nuisance tripping of adjustable-speed drives due to voltage magnification [J].
Bellei, TA ;
OLeary, RP ;
Camm, EH .
IEEE TRANSACTIONS ON POWER DELIVERY, 1996, 11 (03) :1373-1378
[2]   Hybrid solutions for improving passive filter performance in high power applications [J].
Bhattacharya, S ;
Cheng, PT ;
Divan, DM .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1997, 33 (03) :732-747
[3]  
BHATTACHARYA S, 1991, P EPE C FLOR IT, P30
[4]   Dynamic sag correctors: Cost-effective industrial power line conditioning [J].
Brumsickle, WE ;
Schneider, RS ;
Luckjiff, GA ;
Divan, DM ;
McGranaghan, MF .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2001, 37 (01) :212-217
[5]  
Chan K, 1998, INT C HARMON QUAL PO, P561, DOI 10.1109/ICHQP.1998.759971
[6]  
CHANG WK, 2002, NSC 90 2218 E 194 04
[7]  
CHEN TS, 1995, SWITCHING TRANSIENT
[8]  
*EPRI, 1998, WORKSH POW QUAL SEM
[9]   HARMONICS AND TRANSIENT OVERVOLTAGES DUE TO CAPACITOR SWITCHING [J].
GIRGIS, AA ;
FALLON, CM ;
RUBINO, JCP ;
CATOE, RC .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1993, 29 (06) :1184-1188
[10]   Application of distribution system capacitor banks and their impact on power quality [J].
Grebe, TE .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1996, 32 (03) :714-719