Quantum phase-space function formulation of reactive flux theory

被引:25
作者
Barik, D [1 ]
Banik, SK
Ray, DS
机构
[1] Indian Assoc Cultivat Sci, Jadavpur 700032, Kolkata, India
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1063/1.1579473
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
On the basis of a coherent-state representation of the quantum noise operator and an ensemble averaging procedure a scheme for quantum Brownian motion has been proposed recently [Banerjee , Phys. Rev. E 65, 021109 (2002); 66, 051105 (2002)]. We extend this approach to formulate reactive flux theory in terms of quantum phase space distribution functions and to derive a time-dependent quantum transmission coefficient-a quantum analog of the classical Kramers-Grote-Hynes coefficient in the spirit of Kohen and Tannor's classical formulation. The theory is valid for arbitrary noise correlation and temperature. The specific forms of this coefficient in the Markovian as well as in the non-Markovian limits have been worked out in detail for the intermediate to strong damping regimes with an analysis of quantum effects. While the classical transmission coefficient is independent of temperature, its quantum counterpart has significant temperature dependence particularly in the low-temperature regime. (C) 2003 American Institute of Physics.
引用
收藏
页码:680 / 695
页数:16
相关论文
共 61 条
[1]   Thermodynamics and kinetics of a Brownian motor [J].
Astumian, RD .
SCIENCE, 1997, 276 (5314) :917-922
[2]   Quantum Kramers equation for energy diffusion and barrier crossing dynamics in the low-friction regime [J].
Banerjee, D ;
Banik, SK ;
Bag, BC ;
Ray, DS .
PHYSICAL REVIEW E, 2002, 66 (05) :20
[3]   Quantum Smoluchowski equation: escape from a metastable state [J].
Banerjee, D ;
Bag, BC ;
Banik, SK ;
Ray, DS .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 318 (1-2) :6-13
[4]   Approach to quantum Kramers' equation and barrier crossing dynamics [J].
Banerjee, D ;
Bag, BC ;
Banik, SK ;
Ray, DS .
PHYSICAL REVIEW E, 2002, 65 (02) :1-021109
[5]   Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions [J].
Banik, Suman Kumar ;
Bag, Bidhan Chandra ;
Ray, Deb Shankar .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05) :1-051106
[6]   The generalized Kramers theory for nonequilibrium open one-dimensional systems [J].
Banik, SK ;
Chaudhuri, JR ;
Ray, DS .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (19) :8330-8337
[7]   ACTIVATED RATE-PROCESSES - GENERALIZATION OF THE KRAMERS-GROTE-HYNES AND LANGER THEORIES [J].
BEREZHKOVSKII, AM ;
POLLAK, E ;
ZITSERMAN, VY .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (04) :2422-2437
[8]  
BERNE BJ, 1986, ANNU REV PHYS CHEM, V37, P401
[9]   Irreversible bimolecular reactions of Langevin particles [J].
Bicout, DJ ;
Berezhkovskii, AM ;
Szabo, A .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (05) :2293-2303
[10]   Kramers-like turnover in activationless rate processes [J].
Bicout, DJ ;
Berezhkovskii, AM ;
Szabo, A ;
Weiss, GH .
PHYSICAL REVIEW LETTERS, 1999, 83 (07) :1279-1282