Redox Regulation of the NPR1-TGA1 System of Arabidopsis thaliana by Nitric Oxide

被引:301
作者
Lindermayr, Christian [1 ]
Sell, Simone [1 ]
Mueller, Bernd [2 ]
Leister, Dario
Durnera, Joerg [1 ,3 ]
机构
[1] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Biochem Plant Pathol, D-85764 Neuherberg, Germany
[2] Univ Munich, Dept Biol 1, Mass Spectrometry Unit, D-82152 Planegg Martinsried, Germany
[3] Tech Univ Munich, Lehrstuhl Biochem Pflanzenpathol, D-85354 Freising Weihenstephan, Germany
关键词
PROTEIN S-NITROSYLATION; DNA-BINDING ACTIVITY; DISEASE RESISTANCE; TRANSCRIPTION FACTORS; MICROARRAY ANALYSIS; NITROSATIVE STRESS; CYSTEINE RESIDUES; OXIDATIVE STRESS; GENE INDUCTION; PLANT-GROWTH;
D O I
10.1105/tpc.109.066464
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The role of reactive oxygen and nitrogen species in local and systemic defense reactions is well documented. NPR1 and TGA1 are key redox-controlled regulators of systemic acquired resistance in plants. NPR1 monomers interact with the reduced form of TGA1, which targets the activation sequence-1 (as-1) element of the promoter region of defense proteins. Here, we report the effect of the physiological nitric oxide donor S-nitrosoglutathione on the NPR1/TGA1 regulation system in Arabidopsis thaliana. Using the biotin switch method, we demonstrate that both NPR1 and TGA1 are S-nitrosylated after treatment with S-nitrosoglutathione. Mass spectrometry analyses revealed that the Cys residues 260 and 266 of TGA1 are S-nitrosylated and S-glutathionylated even at GSNO concentrations in the low micromolar range. Furthermore, we showed that S-nitrosoglutathione protects TGA1 from oxygen-mediated modifications and enhances the DNA binding activity of TGA1 to the as-1 element in the presence of NPR1. In addition, we observed that the translocation of NPR1 into the nucleus is promoted by nitric oxide. Taken together, our results suggest that nitric oxide is a redox regulator of the NPR1/TGA1 system and that they underline the importance of nitric oxide in the plant defense response.
引用
收藏
页码:2894 / 2907
页数:14
相关论文
共 75 条
[1]   TRANSIENT TRANSFORMATION OF ARABIDOPSIS LEAF PROTOPLASTS - A VERSATILE EXPERIMENTAL SYSTEM TO STUDY GENE-EXPRESSION [J].
ABEL, S ;
THEOLOGIS, A .
PLANT JOURNAL, 1994, 5 (03) :421-427
[2]   Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels [J].
Aracena, P ;
Tang, WT ;
Hamilton, SL ;
Hidalgo, C .
ANTIOXIDANTS & REDOX SIGNALING, 2005, 7 (7-8) :870-881
[3]   S-glutathionylation decreases Mg2+ inhibition and S-nitrosylation enhances Ca2+ activation of RyR1 channels [J].
Aracena, P ;
Sánchez, G ;
Donoso, P ;
Hamilton, SL ;
Hidalgo, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (44) :42927-42935
[4]   Redox- and Calmodulin-dependent S-Nitrosylation of the KCNQ1 Channel [J].
Asada, Ken ;
Kurokawa, Junko ;
Furukawa, Tetsushi .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (09) :6014-6020
[5]  
Ausubel F. M., 1988, Current protocols in molecular biology
[6]   Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue [J].
Belenghi, Beatrice ;
Romero-Puertas, Maria C. ;
Vercammen, Dominique ;
Brackenier, Anouk ;
Inze, Dirk ;
Delledonne, Massimo ;
Van Breusegem, Frank .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (02) :1352-1358
[7]   Oxidative stress and S-nitrosylation of proteins in cells [J].
Beltrán, B ;
Orsi, A ;
Clementi, E ;
Moncada, S .
BRITISH JOURNAL OF PHARMACOLOGY, 2000, 129 (05) :953-960
[8]   AN INTERMOLECULAR DISULFIDE BOND STABILIZES E2A HOMODIMERS AND IS REQUIRED FOR DNA-BINDING AT PHYSIOLOGICAL TEMPERATURES [J].
BENEZRA, R .
CELL, 1994, 79 (06) :1057-1067
[9]   Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide [J].
Bethke, PC ;
Gubler, F ;
Jacobsen, JV ;
Jones, RL .
PLANTA, 2004, 219 (05) :847-855
[10]   Regeneration of the ferrous heme of soluble guanylate cyclase from the nitric oxide complex: Acceleration by thiols and oxyhemoglobin [J].
Brandish, PE ;
Buechler, W ;
Marletta, MA .
BIOCHEMISTRY, 1998, 37 (48) :16898-16907