Effects of gamma-linolenic acid and oleic acid on paclitaxel cytotoxicity in human breast cancer cells

被引:124
作者
Menéndez, JA
Barbacid, MD
Montero, S
Sevilla, E
Escrich, E
Solanas, M
Cortés-Funes, H
Colomer, R
机构
[1] Hosp Univ 12 Octubre, Div Med Oncol, E-28041 Madrid, Spain
[2] Univ Autonoma Barcelona, Sch Med, Unit Med Physiol, Dept Cellular Biol Physiol Immunol, E-08193 Barcelona, Spain
关键词
paclitaxel; gamma-linolenic acid; oleic acid; breast cancer; chemotherapy;
D O I
10.1016/S0959-8049(00)00408-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
It has been suggested that dietary interventions may improve the effectiveness of cancer chemotherapy. We have examined the combined in vitro cytotoxicity of paclitaxel and the fatty acids gamma-linolenic acid (GLA, 18:3n-6) and oleic acid (OA, 18:1n-9) in human breast carcinoma MDA-MB-231 cells. The effect of fatty acids on paclitaxel chemosensitivity was determined by comparing IC50 and IC70 (50 and 70% inhibitory concentrations, respectively) obtained when the cells were exposed to IC50 and IC70 levels of paclitaxel alone and fatty acids were supplemented either before or during the exposure to paclitaxel. The 3-4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to determine cell growth inhibition. GLA by itself showed antiproliferative effects, and a possible GLA-paclitaxel interaction at the cellular level was assessed by the isobologram and the combination-index (CI) methods. Isobole analysis at the isoeffect levels of 50 and 70% revealed that drug interaction was predominantly synergistic when GLA and paclitaxel were added concurrently for 24 h to the cell cultures. Interaction assessment using the median-effect principle and the combination-index (CI) method showed that exposure of MDA-MB-231 cells to an equimolar combination of concurrent GLA plus paclitaxel for 24 h resulted in a moderate synergism at all effect levels, consistent with the results of the isobologram analysis. When exposure to GLA (24 h) was followed sc sequentially by paclitaxel (24 h) only an additive effect was observed. The GLA-mediated increase in paclitaxel chemosensitivity was only partially abolished by Vitamin E, a lipid peroxidation inhibitor, suggesting a limited influence of the oxidative status of GLA in achieving potentiation of paclitaxel toxicity. When OA (a non-peroxidisable fatty acid) was combined with paclitaxel. an enhancement of chemosensitivity was found when OA was used concurrently with paclitaxel, although less markedly than with GLA. Pretreatment of MDA-MB-231 cells with OA for 24 h prior to a 24 h paclitaxel exposure produced greater enhancement of paclitaxel sensitivity at high OA concentrations than the concurrent exposure to OA and paclitaxel. The OA-induced sensitisation to paclitaxel was not due to the cytoxicity of the fatty acid itself. When these observations were extended to three additional breast carcinoma cell lines (SK-Br3, T47D and MCF-7), simultaneous exposure to GLA and paclitaxel also resulted in synergism. GLA preincubation followed by paclitaxel resulted in additivity for all cell lines. Simultaneous exposure to paclitaxel and OA enhanced paclitaxel cytotoxicity in T47D and MCF-7 cells, but not in SK-Br3 cells, whereas preincubation with OA failed to increase paclitaxel effectiveness in all three cell lines. For comparison, the effects of other fatty acids on paclitaxel chemosensitivity were examined: GLA was the most potent at enhancing paclitaxel cytotoxicity, followed by alpha-linolenic acid (ALA: 18:3n.3), eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), whereas linoleic acid (LA; 18:2n-6) did not increase paclitaxel toxicity. These findings provide experimental support for the use of fatty acids as modulators of tumour cell chemosensitivity in paclitaxel-based therapy. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:402 / 413
页数:12
相关论文
共 25 条
[1]  
BEGIN ME, 1986, JNCI-J NATL CANCER I, V77, P1053
[2]   POLY-UNSATURATED FATTY ACID-INDUCED CYTO-TOXICITY AGAINST TUMOR-CELLS AND ITS RELATIONSHIP TO LIPID-PEROXIDATION [J].
BEGIN, ME ;
ELLS, G ;
HORROBIN, DF .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1988, 80 (03) :188-194
[3]   CYTOTOXIC EFFECTS OF ESSENTIAL FATTY-ACIDS (EFA) IN MIXED CULTURES OF NORMAL AND MALIGNANT HUMAN-CELLS [J].
BEGIN, ME ;
DAS, UN ;
ELLS, G .
PROGRESS IN LIPID RESEARCH, 1986, 25 :573-576
[4]   DOXORUBICIN-INDUCED LIPID-PEROXIDATION AND GLUTATHIONE-PEROXIDASE ACTIVITY IN TUMOR-CELL LINES SELECTED FOR RESISTANCE TO DOXORUBICIN [J].
BENCHEKROUN, MN ;
POURQUIER, P ;
SCHOTT, B ;
ROBERT, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 211 (1-2) :141-146
[5]  
BERENBAUM MC, 1989, PHARMACOL REV, V41, P93
[6]  
Blagosklonny MV, 1996, CANCER RES, V56, P1851
[7]   INFLUENCE OF N-3 FATTY-ACIDS ON THE GROWTH OF HUMAN BREAST-CANCER CELLS IN-VITRO - RELATIONSHIP TO PEROXIDES AND VITAMIN-E [J].
CHAJES, V ;
SATTLER, W ;
STRANZL, A ;
KOSTNER, GM .
BREAST CANCER RESEARCH AND TREATMENT, 1995, 34 (03) :199-212
[8]   QUANTITATIVE-ANALYSIS OF DOSE-EFFECT RELATIONSHIPS - THE COMBINED EFFECTS OF MULTIPLE-DRUGS OR ENZYME-INHIBITORS [J].
CHOU, TC ;
TALALAY, P .
ADVANCES IN ENZYME REGULATION, 1984, 22 :27-55
[9]   Effect of γ-linolenic acid on cellular uptake of structurally related anthracyclines in human drug sensitive and multidrug resistant bladder and breast cancer cell lines [J].
Davies, CL ;
Loizidou, M ;
Cooper, AJ ;
Taylor, I .
EUROPEAN JOURNAL OF CANCER, 1999, 35 (10) :1534-1540
[10]  
DEBRAVO MG, 1994, MED SCI RES, V22, P667