Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition

被引:623
作者
Scheibel, T
Parthasarathy, R
Sawicki, G
Lin, XM
Jaeger, H
Lindquist, SL
机构
[1] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[4] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[5] Univ Chicago, Howard Hughes Med Inst, Chicago, IL 60637 USA
关键词
D O I
10.1073/pnas.0431081100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent research in the field of nanometer-scale electronics has focused on the operating principles of small-scale devices and schemes to realize useful circuits. In contrast to established "top-down" fabrication techniques, molecular self-assembly is emerging as a "bottom-up" approach for fabricating nanostructured materials. Biological macromolecules, especially proteins, provide many valuable properties, but poor physical stability and poor electrical characteristics have prevented their direct use in electrical circuits. Here we describe the use of self-assembling amyloid protein fibers to construct nanowire elements. Self-assembly of a prion determinant from Saccharomyces cerevisiae, the N-terminal and middle region (NM) of Sup35p, produced 10-nm-wide protein fibers that were stable under a wide variety of harsh physical conditions. Their lengths could be roughly controlled by assembly conditions in the range of 60 nm to several hundred micrometers. A genetically modified NM variant that presents reactive, surface-accessible cysteine residues was used to covalently link NM fibers to colloidal gold particles. These fibers were placed across gold electrodes, and additional metal was deposited by highly specific chemical enhancement of the colloidal gold by reductive deposition of metallic silver and gold from salts. The resulting silver and gold wires were approximate to100 nm wide. These biotemplated metal wires demonstrated the conductive properties of a solid metal wire, such as low resistance and ohmic behavior. With such materials it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry.
引用
收藏
页码:4527 / 4532
页数:6
相关论文
共 51 条
[1]   Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein [J].
Baxa, U ;
Speransky, V ;
Steven, AC ;
Wickner, RB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5253-5260
[2]  
Begley TJ, 2002, MOL CANCER RES, V1, P103
[3]   Self-assembly of nanoparticles into structured spherical and network aggregates [J].
Boal, AK ;
Ilhan, F ;
DeRouchey, JE ;
Thurn-Albrecht, T ;
Russell, TP ;
Rotello, VM .
NATURE, 2000, 404 (6779) :746-748
[4]   DNA-templated assembly and electrode attachment of a conducting silver wire [J].
Braun, E ;
Eichen, Y ;
Sivan, U ;
Ben-Yoseph, G .
NATURE, 1998, 391 (6669) :775-778
[5]   Origins and kinetic consequences of diversity in Sup35 yeast prion fibers [J].
DePace, AH ;
Weissman, JS .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (05) :389-396
[6]  
Fowler CE, 2001, ADV MATER, V13, P1266, DOI 10.1002/1521-4095(200108)13:16<1266::AID-ADMA1266>3.0.CO
[7]  
2-9
[8]   Metallic nanowires created by biopolymer masking [J].
Fritzsche, W ;
Böhm, KJ ;
Unger, E ;
Köhler, JM .
APPLIED PHYSICS LETTERS, 1999, 75 (18) :2854-2856
[9]   Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S-cerevisiae [J].
Glover, JR ;
Kowal, AS ;
Schirmer, EC ;
Patino, MM ;
Liu, JJ ;
Lindquist, S .
CELL, 1997, 89 (05) :811-819
[10]  
Grabert H., 1992, Single Charge Tunneling