An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in arabidopsis.: Identification of BIG as a mediator of auxin in pericycle cell activation

被引:144
作者
López-Bucio, J
Hernández-Abreu, E
Sánchez-Calderón, L
Pérez-Torres, A
Rampey, RA
Bartel, B
Herrera-Estrella, L [1 ]
机构
[1] Inst Politecn Nacl, Dept Ingn Genet, Unidad Irapuato, Ctr Invest & Estudios Avanzados, Guanajuato 36500, Mexico
[2] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77005 USA
关键词
D O I
10.1104/pp.104.049577
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mM) and low (1 muM) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.
引用
收藏
页码:681 / 691
页数:11
相关论文
共 38 条
[1]   Phosphate sensing in higher plants [J].
Abel, S ;
Ticconi, CA ;
Delatorre, CA .
PHYSIOLOGIA PLANTARUM, 2002, 115 (01) :1-8
[2]   Temporal responses of Arabidopsis root architecture to phosphate starvation:: evidence for the involvement of auxin signalling [J].
Al-Ghazi, Y ;
Muller, B ;
Pinloche, S ;
Tranbarger, TJ ;
Nacry, P ;
Rossignol, M ;
Tardieu, F ;
Doumas, P .
PLANT CELL AND ENVIRONMENT, 2003, 26 (07) :1053-1066
[3]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[4]   Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings [J].
Bhalerao, RP ;
Eklöf, J ;
Ljung, K ;
Marchant, A ;
Bennett, M ;
Sandberg, G .
PLANT JOURNAL, 2002, 29 (03) :325-332
[5]   Auxin transport promotes Arabidopsis lateral root initiation [J].
Casimiro, I ;
Marchant, A ;
Bhalerao, RP ;
Beeckman, T ;
Dhooge, S ;
Swarup, R ;
Graham, N ;
Inzé, D ;
Sandberg, G ;
Casero, PJ ;
Bennett, M .
PLANT CELL, 2001, 13 (04) :843-852
[6]   A PATHWAY FOR LATERAL ROOT-FORMATION IN ARABIDOPSIS-THALIANA [J].
CELENZA, JL ;
GRISAFI, PL ;
FINK, GR .
GENES & DEVELOPMENT, 1995, 9 (17) :2131-2142
[7]   Auxin transport - shaping the plant [J].
Friml, J .
CURRENT OPINION IN PLANT BIOLOGY, 2003, 6 (01) :7-12
[8]   Auxin transport inhibitors block PIN1 cycling and vesicle traficking [J].
Geldner, N ;
Friml, J ;
Stierhof, YD ;
Jürgens, G ;
Palme, K .
NATURE, 2001, 413 (6854) :425-428
[9]   BIG:: a calossin-like protein required for polar auxin transport in Arabidopsis [J].
Gil, P ;
Dewey, E ;
Friml, J ;
Zhao, Y ;
Snowden, KC ;
Putterill, J ;
Palme, K ;
Estelle, M ;
Chory, J .
GENES & DEVELOPMENT, 2001, 15 (15) :1985-1997
[10]   Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate [J].
Gilbert, GA ;
Knight, JD ;
Vance, CP ;
Allan, DL .
ANNALS OF BOTANY, 2000, 85 (06) :921-928