Human tumor xenografts recurring after radiotherapy are more sensitive to anti-vascular endothelial growth factor receptor-2 treatment than treatment-naive tumors

被引:28
作者
Kozin, Sergey V.
Winkler, Frank
Garkavtsev, Igor
Hicklin, Daniel J.
Jain, Rakesh K.
Boucher, Yves
机构
[1] Massachusetts Gen Hosp, Edwin L Steele Lab Tumor Biol Radiat Oncol, Dept Radiat Oncol, Boston, MA 02114 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
[3] ImClone Syst Inc, New York, NY USA
关键词
D O I
10.1158/0008-5472.CAN-06-3664
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The effects of antiangiogenic therapy on tumors relapsing after irradiation are not known. To this end, we irradiated human tumors growing s.c. in nude mice with a single dose of 20 or 30 Gy. Compared with primary (treatment-naive) xenografts, the growth rate of recurrent tumors was 1.6-fold slower, which is consistent with the known "tumor bed effect." For similar size tumors, recurrences had fewer functional vessels, a reduced vessel coverage by perivascular cells, and were more necrotic. Placenta growth factor concentration was significantly lower in relapses, whereas vascular endothelial growth factor (VEGF) levels were similar between primary and recurrent tumors. On the other hand, fibrillar collagen deposition was significantly increased in recurrent tumors. This radiation-induced fibrosis was partially responsible for the slower growth of recurrences; the i.t. injection of collagenase increased the growth rate of tumor relapses without affecting primary tumor growth. The mouse-specific VEGF receptor 2-blocking antibody DC101 induced a 2.2-fold longer growth delay in recurrent tumors compared with treatment-naive tumors. DC101 significantly decreased the interstitial fluid pressure and did not change the functional vessel density and perivascular cell coverage in both tumor variants. Interestingly, DC101 induced a rapid (2 days after treatment initiation) and significant decrease in tumor cell proliferation in recurrent but not in primary tumors. Thus, our results show that the stromal compartment and the response to antiangionenic therapy of primary and in-field recurrent tumors are significantly different. Our findings suggest that antiangiogenic agents could be effective in the treatment of patients with relapses after radiotherapy.
引用
收藏
页码:5076 / 5082
页数:7
相关论文
共 33 条
[1]  
Adini A, 2002, CANCER RES, V62, P2749
[2]   Recent progress in defining mechanisms and potential targets for prevention of normal tissue injury after radiation therapy [J].
Anscher, MS ;
Chen, LG ;
Rabbani, Z ;
Kang, S ;
Larrier, N ;
Huang, H ;
Samulski, TV ;
Dewhirst, MW ;
Brizel, DM ;
Folz, RJ ;
Vujaskovic, Z .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 62 (01) :255-259
[3]   AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients [J].
Batchelor, Tracy T. ;
Sorensen, A. Gregory ;
di Tomaso, Emmanuelle ;
Zhang, Wei-Ting ;
Duda, Dan G. ;
Cohen, Kenneth S. ;
Kozak, Kevin R. ;
Cahill, Daniel P. ;
Chen, Poe-Jou ;
Zhu, Mingwang ;
Ancukiewicz, Marek ;
Mrugala, Maciej M. ;
Plotkin, Scott ;
Drappatz, Jan ;
Louis, David N. ;
Ivy, Percy ;
Scadden, David T. ;
Benner, Thomas ;
Loeffler, Jay S. ;
Wen, Patrick Y. ;
Jain, Rakesh K. .
CANCER CELL, 2007, 11 (01) :83-95
[4]   Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice [J].
Beecken, WDC ;
Fernandez, A ;
Joussen, AM ;
Achilles, EG ;
Flynn, E ;
Lo, KM ;
Gillies, SD ;
Javaherian, K ;
Folkman, J ;
Shing, Y .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2001, 93 (05) :382-387
[5]  
BOUCHER Y, 1991, CANCER RES, V51, P6691
[6]   Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation [J].
Brown, E ;
McKee, T ;
diTomaso, E ;
Pluen, A ;
Seed, B ;
Boucher, Y ;
Jain, RK .
NATURE MEDICINE, 2003, 9 (06) :796-800
[7]   Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions [J].
Carmeliet, P ;
Moons, L ;
Luttun, A ;
Vincenti, V ;
Compernolle, V ;
De Mol, M ;
Wu, Y ;
Bon, F ;
Devy, L ;
Beck, H ;
Scholz, D ;
Acker, T ;
DiPalma, T ;
Dewerchin, M ;
Noel, A ;
Stalmans, I ;
Barra, A ;
Blacher, S ;
Vandendriessche, T ;
Ponten, A ;
Eriksson, U ;
Plate, KH ;
Foidart, JM ;
Schaper, W ;
Charnock-Jones, DS ;
Hicklin, DJ ;
Herbert, JM ;
Collen, D ;
Persico, MG .
NATURE MEDICINE, 2001, 7 (05) :575-583
[8]   The radiotherapeutic injury - a complex 'wound' [J].
Denham, JW ;
Hauer-Jensen, M .
RADIOTHERAPY AND ONCOLOGY, 2002, 63 (02) :129-145
[9]   Effect of VEGF receptor-2 antibody on vascular function and oxygenation in spontaneous and transplanted tumors [J].
Fenton, BM ;
Paoni, SF ;
Ding, I .
RADIOTHERAPY AND ONCOLOGY, 2004, 72 (02) :221-230
[10]  
Folkman J., 2006, CANC MED, P157