Side-chain ionization states in a potassium channel

被引:68
作者
Ranatunga, KM
Shrivastava, IH
Smith, GR
Sansom, MSP
机构
[1] Univ Oxford, Dept Biochem, Lab Mol Biophys, Oxford OX1 3QU, England
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Biophys Sect, London SW7 2BZ, England
基金
英国惠康基金;
关键词
D O I
10.1016/S0006-3495(01)76097-3
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
KcsA is a bacterial K+ channel that is gated by pH. Continuum dielectric calculations on the crystal structure of the channel protein embedded in a low dielectric slab suggest that side chains E71 and D80 of each subunit, which lie adjacent to the selectivity filter region of the channel, form a proton-sharing pair in which E71 is neutral (protonated) and D80 is negatively charged at pH 7. When K+ ions are introduced into the system at their crystallographic positions the pattern of proton:sharing is altered. The largest perturbation is for a K+ ion at site S3, i.e., interacting with the carbonyls of T75 and V76. The presence of multiple K+ ions in the filter increases the probability of E71 being ionized and of D80 remaining neutral (i.e., protonated). The ionization states of the protein side chains influence the potential energy profile experienced by a K+ ion as it is translated along the pore axis. In particular, the ionization state of the E71-D80 proton-sharing pair modulates the shape of the potential profile in the vicinity of the selectivity filter. Such reciprocal effects of ion occupancy on side-chain ionization states, and of side-chain ionization states on ion potential energy profiles will complicate molecular dynamics simulations and related studies designed to calculate ion permeation energetics.
引用
收藏
页码:1210 / 1219
页数:10
相关论文
共 58 条
[1]   The nicotinic acetylcholine receptor: from molecular model to single-channel conductance [J].
Adcock, C ;
Smith, GR ;
Sansom, MSP .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2000, 29 (01) :29-37
[2]   Electrostatics and the ion selectivity of ligand-gated channels [J].
Adcock, C ;
Smith, GR ;
Sansom, MSP .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1211-1222
[3]   Molecular dynamics study of the KcsA potassium channel [J].
Allen, TW ;
Kuyucak, S ;
Chung, SH .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2502-2516
[4]   The potassium channel: Structure, selectivity and diffusion [J].
Allen, TW ;
Bliznyuk, A ;
Rendell, AP ;
Kuyucak, S ;
Chung, SH .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (18) :8191-8204
[5]  
Antosiewicz J, 1996, J COMPUT CHEM, V17, P1633, DOI 10.1002/(SICI)1096-987X(19961115)17:14<1633::AID-JCC5>3.0.CO
[6]  
2-M
[7]   Ion permeation mechanism of the potassium channel [J].
Åqvist, J ;
Luzhkov, V .
NATURE, 2000, 404 (6780) :881-884
[8]  
Ashcroft F.M., 2000, Ion Channels and Disease
[9]   ELECTROSTATIC CALCULATIONS OF THE PKA VALUES OF IONIZABLE GROUPS IN BACTERIORHODOPSIN [J].
BASHFORD, D ;
GERWERT, K .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (02) :473-486
[10]   PKAS OF IONIZABLE GROUPS IN PROTEINS - ATOMIC DETAIL FROM A CONTINUUM ELECTROSTATIC MODEL [J].
BASHFORD, D ;
KARPLUS, M .
BIOCHEMISTRY, 1990, 29 (44) :10219-10225