Chaotic repellers in the antiferromagnetic ising model

被引:15
作者
Ananikian, NS
Dallakian, SK
Izmailian, NS
Oganessyan, KA
机构
[1] Department of Theoretical Physics, Yerevan Physics Institute, 375036 Yerevan
关键词
Ising; Husimi; antiferromagnetic; chaos; repeller;
D O I
10.1016/0375-9601(96)00176-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the first time we consider the antiferromagnetic Ising model in the Case of fully developed chaos and obtain the exact connection between this model and chaotic repellers. We describe the chaotic properties of this statistical mechanical system via the invariants characterizing a fractal set and show that in the chaotic region it displays a phase transition at the positive ''temperature'' beta(c) = 0.89. We obtain the density of the invariant measure on the chaotic repeller.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 32 条
[1]   THE GAUGE POTTS-MODEL ON A GENERALIZED BETHE LATTICE [J].
AKHEYAN, AZ ;
ANANIKIAN, NS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (11) :3111-3119
[2]   TRICRITICAL PHENOMENA IN A Z(3) LATTICE GAUGE-THEORY [J].
ANANIKIAN, NS ;
SHCHERBAKOV, RR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (23) :L887-L890
[3]   MULTISITE ANTIFERROMAGNETIC ISING SPIN MODEL - PHASE-TRANSITION THROUGH DOUBLING BIFURCATION [J].
ANANIKIAN, NS ;
OGANESSYAN, KA .
PHYSICS LETTERS A, 1995, 200 (02) :205-208
[4]  
ANANIKIAN NS, 1995, JETP LETT, V61, P482
[5]   THE ENTROPY FUNCTION FOR CHARACTERISTIC EXPONENTS [J].
BOHR, T ;
RAND, D .
PHYSICA D, 1987, 25 (1-3) :387-398
[6]   ORDER PARAMETER, SYMMETRY-BREAKING, AND PHASE-TRANSITIONS IN THE DESCRIPTION OF MULTIFRACTAL SETS [J].
BOHR, T ;
JENSEN, MH .
PHYSICAL REVIEW A, 1987, 36 (10) :4904-4915
[7]  
BOHR T, 1988, DIRECTIONS CHAOS, V2, P195
[8]  
COLLET P, 1980, ITERATED MAPS INTERV
[9]  
CVIANTOVICH P, 1983, PHYS LETT A, V94, P329
[10]  
DOLAN P, CONDMAT9412031