Malliavin calculus and Skorohod integration for quantum stochastic processes

被引:8
作者
Franz, U
Léandre, R
Schott, R
机构
[1] Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
[2] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Nancy, France
关键词
D O I
10.1142/S0219025701000376
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A derivation operator and a divergence operator are defined on the algebra of bounded operators on the symmetric Fock space over the complexification of a real Hilbert space h and it is shown that they satisfy similar properties as the derivation and divergence operator on the Wiener space over h. The derivation operator is then used to give sufficient conditions for the existence of smooth Wigner densities for pairs of operators satisfying the canonical commutation relations. For h = L-2(R+), the divergence operator is shown to coincide with the Hudson-Parthasarathy quantum stochastic integral for adapted integrable processes and with the noncausal quantum stochastic integrals defined by Lindsay and Belavkin for integrable processes.
引用
收藏
页码:11 / 38
页数:28
相关论文
共 19 条
[1]  
[Anonymous], P INT S STOCH DIFF E
[2]  
[Anonymous], 1995, LECT NOTES MATH
[3]  
[Anonymous], 1995, LECT NOTES MATH
[4]   A QUANTUM NONADAPTED ITO FORMULA AND STOCHASTIC-ANALYSIS IN FOCK SCALE [J].
BELAVKIN, VP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (02) :414-447
[5]  
BELAVKIN VP, 1991, QUANTUM PROBABILITY, V6, P137
[6]   Stochastic calculus with respect to free Brownian motion and analysis on Wigner space [J].
Biane, P ;
Speicher, R .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 112 (03) :373-409
[7]  
BIANE P, 1993, LECT NOTES MATH, V1608
[8]   MARTINGALES, THE MALLIAVIN CALCULUS AND HYPOELLIPTICITY UNDER GENERAL HORMANDER CONDITIONS [J].
BISMUT, JM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (04) :469-505
[9]   Malliavin calculus for quantum stochastic processes [J].
Franz, U ;
Léandre, R ;
Schott, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (11) :1061-1066
[10]  
Gross L, 1967, J FUNCT ANAL, V1, P123, DOI [DOI 10.1016/0022-1236(67)90030-4, 10.1016/0022-1236(67)90030-4]