Size-dependent catalytic behavior of platinum nanoparticles on the hexacyanoferrate(III)/thiosulfate redox reaction

被引:93
作者
Sharma, RK [1 ]
Sharma, P [1 ]
Maitra, A [1 ]
机构
[1] Univ Delhi, St Stephens Coll, Dept Chem, Delhi 110007, India
关键词
D O I
10.1016/S0021-9797(03)00463-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Platinum nanoparticles prepared in reverse micelles have been used as catalysts for the electron transfer reaction between hexacyanoferrate(III) and thiosulfate ions. Nanoparticles of average diameter ranging between 10 and 80 nm have been used as catalysts. The kinetic study of the catalytic reaction showed that for a fixed mass of catalyst the catalytic rate did not increase proportionately to the decrease in particle size over the whole range from 10 to 80 nm. The maximum reaction rate has been observed for average particle diameter of about 38 nm. Particles below diameter 38 nm exhibit a trend of decreasing reaction rate with the decrease in particle size, while those above diameter 38 nm show a steady decline of reaction rate with increasing size. It has been postulated that in the case of particles of average size less than 38 nm diameter, a downward shift of Fermi level with a consequent increase of band gap energy takes place. As a result, the particles require more energy to pump electrons to the adsorbed ions for the electron transfer reaction. This leads to a reduced reaction rate catalyzed by smaller particles. On the other hand, for nanoparticles above diameter 38 nm, the change of Fermi level is not appreciable. These particles exhibit less surface area for adsorption as the particle size is increased. As a result, the catalytic efficiency of the particles is also decreased with increased particle size. The activation energies for the reaction catalyzed by platinum nanoparticles of diameters 12 and 30 nm are about 18 and 4.8 kJ/mol, respectively, indicating that the catalytic efficiency of 12-nm-diameter platinum particles is less than that of particles of diameter 30 nm. Extremely slow reaction rate of uncatalyzed reaction has been manifested through a larger activation energy of about 40 kJ/mol for the reaction. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 140
页数:7
相关论文
共 40 条
[1]   Catalytic colloidal Pd dispersions in water-organic solutions of quaternary ammonium salt [J].
Berkovich, Y ;
Garti, N .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1997, 128 (1-3) :91-99
[2]   Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol [J].
Bonet, F ;
Delmas, V ;
Grugeon, S ;
Urbina, RH ;
Silvert, PY ;
Tekaia-Elhsissen, K .
NANOSTRUCTURED MATERIALS, 1999, 11 (08) :1277-1284
[3]   Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape [J].
Brown, KR ;
Walter, DG ;
Natan, MJ .
CHEMISTRY OF MATERIALS, 2000, 12 (02) :306-313
[4]   ULTRAFINE AND SPECIFIC CATALYSTS AFFORDING EFFICIENT HYDROGEN EVOLUTION FROM WATER UNDER VISIBLE-LIGHT ILLUMINATION [J].
BRUGGER, PA ;
CUENDET, P ;
GRATZEL, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1981, 103 (11) :2923-2927
[6]   SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES [J].
BUFFAT, P ;
BOREL, JP .
PHYSICAL REVIEW A, 1976, 13 (06) :2287-2298
[7]   Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide [J].
Carnes, CL ;
Klabunde, KJ .
LANGMUIR, 2000, 16 (08) :3764-3772
[8]  
Cullity B.D., 1978, ELEMENTS XRAY DIFFRA, V2nd, P102
[9]   Preparation and characterization of silane-stabilized, highly uniform, nanobimetallic Pt-Pd particles in solid and liquid matrixes [J].
D'Souza, L ;
Sampath, S .
LANGMUIR, 2000, 16 (22) :8510-8517
[10]   COLLOIDAL CATALYSIS - THE EFFECT OF SOL SIZE AND CONCENTRATION [J].
FREUND, PL ;
SPIRO, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1985, 89 (07) :1074-1077