Kinetics of the superoxide reductase catalytic cycle

被引:44
作者
Emerson, JP
Coulter, ED
Phillips, RS
Kurtz, DM [1 ]
机构
[1] Univ Georgia, Dept Chem, Athens, GA 30602 USA
[2] Univ Georgia, Ctr Metalloenzyme Studies, Athens, GA 30602 USA
关键词
D O I
10.1074/jbc.M306488200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The steady state kinetics of a Desulfovibrio ( D.) vulgaris superoxide reductase (SOR) turnover cycle, in which superoxide is catalytically reduced to hydrogen peroxide at a [Fe( His)(4)(Cys)] active site, are reported. A proximal electron donor, rubredoxin, was used to supply reducing equivalents from NADPH via ferredoxin: NADP(+) oxidoreductase, and xanthine/xanthine oxidase was used to provide a calibrated flux of superoxide. SOR turnover in this system was well coupled, i.e. similar to 2O(2)(radical anion) reduced: NADPH oxidized over a 10-fold range of superoxide flux. The reduction of the ferric SOR active site by reduced rubredoxin was independently measured to have a second-order rate constant of similar to 1 x 10(6) M-1 s(-1). Analysis of the kinetics showed that: ( i) 1 muM SOR can convert a 10 muM/min superoxide flux to a steady state superoxide concentration of 10(-10) M, during which SOR turns over about once every 6 s, (ii) the diffusion-controlled reaction of reduced SOR with superoxide is the slowest process during turnover, and (iii) neither ligation nor deligation of the active site carboxylate of SOR limits the turnover rate. An intracellular SOR concentration on the order of 10 muM is estimated to be the minimum required for lowering superoxide to sublethal levels in aerobically growing SOD knockout mutants of Escherichia coli. SORs from Desulfovibrio gigas and Treponema pallidum showed similar turnover rates when substituted for the D. vulgaris SOR, whereas superoxide dismutases showed no SOR activity in our assay. These results provide quantitative support for previous suggestions that, in times of oxidative stress, SORs efficiently divert intracellular reducing equivalents to superoxide.
引用
收藏
页码:39662 / 39668
页数:7
相关论文
共 48 条
[1]   Superoxide scavenging by neelaredoxin: dismutation and reduction activities in anaerobes [J].
Abreu, IA ;
Xavier, AV ;
LeGall, J ;
Cabelli, DE ;
Teixeira, M .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2002, 7 (06) :668-674
[2]   The mechanism of superoxide scavenging by Archaeoglobus fulgidus neelaredoxin [J].
Abreu, IA ;
Saraiva, LM ;
Soares, CM ;
Teixeira, M ;
Cabelli, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) :38995-39001
[3]   Periplasmic oxygen reduction by Desulfovibrio species [J].
Baumgarten, A ;
Redenius, I ;
Kranczoch, J ;
Cypionka, H .
ARCHIVES OF MICROBIOLOGY, 2001, 176 (04) :306-309
[4]   REACTIVITY OF HO2/O-2 RADICALS IN AQUEOUS-SOLUTION [J].
BIELSKI, BHJ ;
CABELLI, DE ;
ARUDI, RL ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1985, 14 (04) :1041-1100
[5]   ANALYSIS OF THE TRANSCRIPTIONAL UNIT ENCODING THE GENES FOR RUBREDOXIN (RUB) AND A PUTATIVE RUBREDOXIN OXIDOREDUCTASE (RBO) IN DESULFOVIBRIO-VULGARIS HILDENBOROUGH [J].
BRUMLIK, MJ ;
VOORDOUW, G .
JOURNAL OF BACTERIOLOGY, 1989, 171 (09) :4996-5004
[6]   A BLUE NONHEME IRON PROTEIN FROM DESULFOVIBRIO-GIGAS [J].
CHEN, LA ;
SHARMA, P ;
LEGALL, J ;
MARIANO, AM ;
TEIXEIRA, M ;
XAVIER, AV .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 226 (02) :613-618
[7]   Spectroscopic studies of Pyrococcus furiosus superoxide reductase:: Implications for active-site structures and the catalytic mechanism [J].
Clay, MD ;
Jenney, FE ;
Hagedoorn, PL ;
George, GN ;
Adams, MWW ;
Johnson, MK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (05) :788-805
[8]  
COEHLO AV, 1997, J BIOL INORG CHEM, V2, P680
[9]   A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris:: Catalytic electron transfer to rubrerythrin and two-iron superoxide reductase [J].
Coulter, ED ;
Kurtz, DM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2001, 394 (01) :76-86
[10]   Superoxide reactivity of rubredoxin oxidoreductase (desulfoferrodoxin) from Desulfovibrio vulgaris:: A pulse radiolysis study [J].
Coulter, ED ;
Emerson, JP ;
Kurtz, DM ;
Cabelli, DE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (46) :11555-11556