Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density

被引:71
作者
Symonds, VV
Godoy, AV
Alconada, T
Botto, JF
Juenger, TE
Casal, JJ
Lloyd, AM
机构
[1] Univ Texas, Sect Mol Cell & Dev Biol, Austin, TX 78712 USA
[2] Univ Texas, Inst Cellular & Mol Biol, Austin, TX 78712 USA
[3] Univ Texas, Sect Integrated Biol, Austin, TX 78712 USA
[4] Univ Buenos Aires, IFEVA, RA-1417 Buenos Aires, DF, Argentina
关键词
D O I
10.1534/genetics.104.031948
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The majority of biological traits are genetically complex. Mapping the quantitative trait loci (QTL) that determine these phenotypes is a powerful means for estimating many parameters of the genetic architecture fora trait and potentially identifying the genes responsible for natural variation. Typically, Such experiments are conducted in a single mapping population and, therefore, have only the potential to reveal genomic regions that are polymorphic between the progenitors of the population. What remains Unclear is how well the QTL identified in any one mapping experiment characterize the genetics that underlie natural variation in traits. Here we provide QFL mapping data for trichome density from four recombinant inbred mapping populations of Arabidopsis thaliana. By aligning the linkage maps for these four populations onto a common physical map, the results from each experiment were directly compared. Seven of the nine QTL identified are population specific while two were mapped in all four Populations. Our results show that many lineage-specific alleles that either increase or decrease trichome density persist in natural populations and that most of this genetic variation is additive. More generally, these findings suggest that the use of multiple populations holds great promise for better understanding the genetic architecture of natural variation.
引用
收藏
页码:1649 / 1658
页数:10
相关论文
共 48 条
[1]   The nature and identification of quantitative trait loci: a community's view [J].
Abiola, O ;
Angel, JM ;
Avner, P ;
Bachmanov, AA ;
Belknap, JK ;
Bennett, B ;
Blankenhorn, EP ;
Blizard, DA ;
Bolivar, V ;
Brockmann, GA ;
Buck, KJ ;
Bureau, JF ;
Casley, WL ;
Chesler, EJ ;
Cheverud, JM ;
Churchill, GA ;
Cook, M ;
Crabbe, JC ;
Crusio, WE ;
Darvasi, A ;
de Haan, G ;
Demant, P ;
Doerge, RW ;
Elliott, RW ;
Farber, CR ;
Flaherty, L ;
Flint, J ;
Gershenfeld, H ;
Gu, JPGJ ;
Gu, WK ;
Himmelbauer, H ;
Hitzemann, R ;
Hsu, HC ;
Hunter, K ;
Iraqi, FA ;
Jansen, RC ;
Johnson, TE ;
Jones, BC ;
Kempermann, G ;
Lammert, F ;
Lu, L ;
Manly, KF ;
Matthews, DB ;
Medrano, JF ;
Mehrabian, M ;
Mittleman, G ;
Mock, BA ;
Mogil, JS ;
Montagutelli, X ;
Morahan, G .
NATURE REVIEWS GENETICS, 2003, 4 (11) :911-916
[2]   Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population [J].
Alonso-Blanco, C ;
Peeters, AJM ;
Koornneef, M ;
Lister, C ;
Dean, C ;
van den Bosch, N ;
Pot, J ;
Kuiper, MTR .
PLANT JOURNAL, 1998, 14 (02) :259-271
[3]  
Ashman TL, 2003, EVOLUTION, V57, P2012, DOI 10.1111/j.0014-3820.2003.tb00381.x
[4]   Understanding quantitative genetic variation [J].
Barton, NH ;
Keightley, PD .
NATURE REVIEWS GENETICS, 2002, 3 (01) :11-21
[5]   Dispersal, gene flow, and population structure [J].
Bohonak, AJ .
QUARTERLY REVIEW OF BIOLOGY, 1999, 74 (01) :21-45
[6]  
Copenhaver GP, 2002, GENETICS, V160, P1631
[7]  
Donohue K, 2000, EVOLUTION, V54, P1969, DOI 10.1111/j.0014-3820.2000.tb01241.x
[8]   A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2 [J].
El-Assal, SED ;
Alonso-Blanco, C ;
Peeters, AJM ;
Raz, V ;
Koornneef, M .
NATURE GENETICS, 2001, 29 (04) :435-440
[9]  
Falconer D.S., 1996, Quantitative Genetics, V4th
[10]   fw2.2:: A quantitative trait locus key to the evolution of tomato fruit size [J].
Frary, A ;
Nesbitt, TC ;
Frary, A ;
Grandillo, S ;
van der Knaap, E ;
Cong, B ;
Liu, JP ;
Meller, J ;
Elber, R ;
Alpert, KB ;
Tanksley, SD .
SCIENCE, 2000, 289 (5476) :85-88