Numerical fitting of molecular properties to Hermite Gaussians

被引:33
作者
Cisneros, G. Andres [1 ]
Elking, Dennis
Piquemal, Jean-Philip
Darden, Thomas A.
机构
[1] Natl Inst Environm Hlth Sci, Struct Biol Lab, Res Triangle Pk, NC 27709 USA
[2] Univ Paris 06, CNRS, UMR 7616, Chim Theor Lab, F-75252 Paris, France
关键词
D O I
10.1021/jp074817r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A procedure is presented to fit gridded molecular properties to auxiliary basis sets (ABSs) of Hermite Gaussians, analogous to the density fitting (DF) method (Dunlap; et al. J. Chem. Phys. 1979, 71, 4993). In this procedure, the ab initio calculated properties (density, electrostatic potential, and/or electric field) are fitted via a linear- or nonlinear-least-squares procedure to auxiliary basis sets (ABS). The calculated fitting coefficients from the numerical grids are shown to be more robust than analytic density fitting due to the neglect of the core contributions. The fitting coefficients are tested by calculating intermolecular Coulomb and exchange interactions for a set of dimers. It is shown that the numerical instabilities observed in DF are caused by the attempt of the ABS to fit the core contributions. In addition, this new approach allows us to reduce the number of functions required to obtain an accurate fit. This results in decreased computational cost, which is shown by calculating the Coulomb energy of a 4096 water box in periodic boundary conditions. Using atom centered Hermite Gaussians, this calculation is only I order of magnitude slower than conventional atom-centered point charges.
引用
收藏
页码:12049 / 12056
页数:8
相关论文
共 40 条
[1]  
ANGYAN JG, 2005, OPEP TOOL OPTIMAL PA, P239
[2]   ATOMS IN MOLECULES [J].
BADER, RFW .
ACCOUNTS OF CHEMICAL RESEARCH, 1985, 18 (01) :9-15
[3]   DECOMPOSITION OF THE CHEMISORPTION BOND BY CONSTRAINED VARIATIONS - ORDER OF THE VARIATIONS AND CONSTRUCTION OF THE VARIATIONAL SPACES [J].
BAGUS, PS ;
ILLAS, F .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (12) :8962-8970
[4]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[5]  
Boys SF., 1959, A fundamental calculation of the energy surface for the system of three hydrogen atoms
[6]  
Technical Report WIS-AF-13
[7]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[8]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[9]   The GROMOS software for biomolecular simulation:: GROMOS05 [J].
Christen, M ;
Hünenberger, PH ;
Bakowies, D ;
Baron, R ;
Bürgi, R ;
Geerke, DP ;
Heinz, TN ;
Kastenholz, MA ;
Kräutler, V ;
Oostenbrink, C ;
Peter, C ;
Trzesniak, D ;
Van Gunsteren, WF .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1719-1751
[10]   Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods [J].
Cisneros, G. Andres ;
Piquemal, Jean-Philip ;
Darden, Thomas A. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (18)