Strontium can increase some osteoblasts without increasing hematopoietic stem cells

被引:98
作者
Lymperi, Stefania [1 ]
Horwood, Nicole [1 ]
Marley, Stephen [2 ]
Gordon, Myrtle Y. [2 ]
Cope, Andrew P. [1 ]
Dazzi, Francesco [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Kennedy Inst Rheumatol, Stem Cell Biol Sect, London SW7 2AZ, England
[2] Hammersmith Hosp, Imperial Coll London, Dept Haematol, London, England
关键词
D O I
10.1182/blood-2007-03-082800
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Osteoblasts are a key component in the regulation of the hematopoietic stem cell (HSC) niche. Manipulating osteoblast numbers results in a parallel change in HSC numbers. We tested the activity of strontium (Sr), a bone anabolic agent that enhances osteoblast function and inhibits osteoclast activity, on hematopoiesis. In vitro treatment of primary murine osteoblasts with Sr increased their ability to form bone nodules, and in vivo it increased osteoblast number, bone volume, and trabecular thickness and decreased trabecular pattern factor. However, the administration of Sr had no influence on primitive HSCs, although the number of hematopoietic progenitors was higher than in control cells. When Sr-treated mice were used as donors for HSC transplantation, no difference in the engraftment ability was observed, whereas hematopoietic recovery was delayed when they were used as recipients. Despite the changes in osteoblast numbers, no increment in the number of N-cadherin(+) osteoblasts and N-cadherin transcripts could be detected in Sr-treated mice. Therefore, increasing the overall number and function of osteoblasts without increasing N-cadherin(+) cells is not sufficient to enhance HSC quantity and function. Our study further supports the notion that N-cadherin(+) osteoblasts are fundamental in the hematopoietic niche.
引用
收藏
页码:1173 / 1181
页数:9
相关论文
共 47 条
[1]   Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor [J].
Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 .
Nature, 2006, 7076 (599-603) :599-603
[2]   Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche [J].
Arai, F ;
Hirao, A ;
Ohmura, M ;
Sato, H ;
Matsuoka, S ;
Takubo, K ;
Ito, K ;
Koh, GY ;
Suda, T .
CELL, 2004, 118 (02) :149-161
[3]   Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells [J].
Barbara, A ;
Delannoy, P ;
Denis, BG ;
Marie, PJ .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2004, 53 (04) :532-537
[4]   In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation [J].
Baron, R ;
Tsouderos, Y .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2002, 450 (01) :11-17
[5]   Osteoblastic cells regulate the haematopoietic stem cell niche [J].
Calvi, LM ;
Adams, GB ;
Weibrecht, KW ;
Weber, JM ;
Olson, DP ;
Knight, MC ;
Martin, RP ;
Schipani, E ;
Divieti, P ;
Bringhurst, FR ;
Milner, LA ;
Kronenberg, HM ;
Scadden, DT .
NATURE, 2003, 425 (6960) :841-846
[6]   The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro [J].
Canalis, E ;
Hott, M ;
Deloffre, P ;
Tsouderos, Y ;
Marie, PJ .
BONE, 1996, 18 (06) :517-523
[7]  
Chappard D, 1999, MICROSC RES TECHNIQ, V45, P303, DOI 10.1002/(SICI)1097-0029(19990515/01)45:4/5<303::AID-JEMT14>3.3.CO
[8]  
2-#
[9]  
CHAPPARD D, 2005, MICROSC ANAL, V19, P17
[10]   Stem cell repopulation efficiency but not pool size is governed by p27kip1 [J].
Cheng, T ;
Rodrigues, N ;
Dombkowski, D ;
Stier, S ;
Scadden, DT .
NATURE MEDICINE, 2000, 6 (11) :1235-1240