Retention of mineral salts by a polyamide nanofiltration membrane

被引:87
作者
Labbez, C [1 ]
Fievet, P [1 ]
Szymczyk, A [1 ]
Vidonne, A [1 ]
Foissy, A [1 ]
Pagetti, J [1 ]
机构
[1] UFR Sci & Tech, Lab Chim Mat & Interfaces, F-25030 Besancon, France
关键词
nanotiltration; salt retention; organic membrane; extended Nernst-Planck equation;
D O I
10.1016/S1383-5866(02)00107-7
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Retention measurements with single salt solutions (KCl, K2SO4, MgSO4 and MgCl2) were carried out with an AFC 30 organic membrane. The membrane showed high retentions for K2SO4 and MgSO4 solutions and moderate ones for MgCl2 and KCl solutions. The effective pore radius and the effective thickness to the porosity ratio of the membrane were determined from the limiting retention of glucose and permeability measurements, respectively. The Dorman Steric Pore Model (DSPM), based on the extended Nernst-Planck equation and a modified Dorman equilibrium accounting for steric effects, was used to characterize the membrane in terms of effective membrane volume charge. It appears that the membrane is positively charged in presence of MgCl2 and MgSO4 solutions and negatively charged for KCl and K2SO4 solutions. This was attributed to ionic adsorption at the interface membrane/solution. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:47 / 55
页数:9
相关论文
共 15 条
[1]   Characterisation of nanofiltration membranes for predictive purposes - Use of salts, uncharged solutes and atomic force microscopy [J].
Bowen, WR ;
Mohammad, AW ;
Hilal, N .
JOURNAL OF MEMBRANE SCIENCE, 1997, 126 (01) :91-105
[2]   Characterisation and prediction of separation performance of nanofiltration membranes [J].
Bowen, WR ;
Mukhtar, H .
JOURNAL OF MEMBRANE SCIENCE, 1996, 112 (02) :263-274
[3]   Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values [J].
Hagmeyer, G ;
Gimbel, R .
DESALINATION, 1998, 117 (1-3) :247-256
[4]   The permeability of membranes I - The theory of ionic permeability I [J].
Meyer, KH ;
Sievers, IF .
HELVETICA CHIMICA ACTA, 1936, 19 :649-664
[5]   FOULING AND RETENTION OF NANOFILTRATION MEMBRANES [J].
NYSTROM, M ;
KAIPIA, L ;
LUQUE, S .
JOURNAL OF MEMBRANE SCIENCE, 1995, 98 (03) :249-262
[6]   Retention measurements of nanofiltration membranes with electrolyte solutions [J].
Peeters, JMM ;
Boom, JP ;
Mulder, MHV ;
Strathmann, H .
JOURNAL OF MEMBRANE SCIENCE, 1998, 145 (02) :199-209
[7]   Modelling the retention of ionic components for different nanofiltration membranes [J].
Schaep, J ;
Vandecasteele, C ;
Mohammad, AW ;
Bowen, WR .
SEPARATION AND PURIFICATION TECHNOLOGY, 2001, 22-3 (1-3) :169-179
[8]   Analysis of the salt retention of nanofiltration membranes using the Donnan-steric partitioning pore model [J].
Schaep, J ;
Vandecasteele, C ;
Mohammad, AW ;
Bowen, WR .
SEPARATION SCIENCE AND TECHNOLOGY, 1999, 34 (15) :3009-3030
[9]  
SCHLOGL R, 1964, STOFFTRANSPORT MEMBR
[10]  
SCHWEITZER PA, 1988, HDB SEPARATIONS TECH