Facial nerve injury-induced disinhibition in the primary motor cortices of both hemispheres

被引:28
作者
Farkas, T
Perge, J
Kis, Z
Wolff, JR
Toldi, J
机构
[1] Univ Szeged, Dept Comparat Physiol, H-6701 Szeged, Hungary
[2] Univ Gottingen, Dept Anat, D-37075 Gottingen, Germany
关键词
deefferentation; denervation; disinhibition; facial nerve; inhibition; motor cortex; n; VII; nerve injury;
D O I
10.1046/j.1460-9568.2000.00096.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Unilateral facial nerve transection induces plastic reorganization of the somatotopic order in the primary motor cortex area (MI). This process is biphasic and starts with a transient disinhibition of connections between cortical areas in both hemispheres. Little is known about the underlying mechanisms. Here, cortical excitability has been studied by paired pulse electrical stimulation, applied either within the MI or peripherally to the trigeminal nerve, while the responses were recorded bilaterally in the MI. The ratios between the amplitudes of the second and first evoked potentials (EPs or fEPSPs) were taken as measures of the inhibitory capacity in the MI ipsilateral or contralateral to the nerve injury. A skin wound or unilateral facial nerve exposure immediately caused a transient facilitation, which was followed by a reset to some level of inhibition in the MI on both sides. After facial nerve transection, the first relatively mild reduction of inhibition started shortly (within 10 min) after denervation. This was followed by a second step, involving a stronger decrease in inhibition, 40-45 min later. Previous publications have proved that sensory nerve injury (deafferentation) induces disinhibition in corresponding areas of the sensory cortex. It is now demonstrated that sham operation and, to an even greater extent, unilateral transection of the purely motoric facial nerve (deefferentation), each induce extended disinhibition in the MIs on both sides.
引用
收藏
页码:2190 / 2194
页数:5
相关论文
共 13 条
[1]  
ALLOWAY KD, 1991, EXP BRAIN RES, V85, P598
[2]   Extended brain disinhibition following small photothrombotic lesions in rat frontal cortex [J].
BuchkremerRatzmann, I ;
Witte, OW .
NEUROREPORT, 1997, 8 (02) :519-522
[3]   C-FIBERS PROVIDE A SOURCE OF MASKING INHIBITION TO PRIMARY SOMATOSENSORY CORTEX [J].
CALFORD, MB ;
TWEEDALE, R .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1991, 243 (1308) :269-275
[4]  
DONOGHUE JP, 1990, EXP BRAIN RES, V79, P492
[5]   Activation of the primary motor cortex by somatosensory stimulation in adult rats is mediated mainly by associational connections from the somatosensory cortex [J].
Farkas, T ;
Kis, Z ;
Toldi, J ;
Wolff, JR .
NEUROSCIENCE, 1999, 90 (02) :353-361
[6]   INJURY-INDUCED REORGANIZATION OF SOMATOSENSORY CORTEX IS ACCOMPANIED BY REDUCTIONS IN GABA STAINING [J].
GARRAGHTY, PE ;
LACHICA, EA ;
KAAS, JH .
SOMATOSENSORY AND MOTOR RESEARCH, 1991, 8 (04) :347-354
[7]  
GRIMM U, 1999, THESIS GOTTINGEN U G
[8]   Rapid astroglial reactions in the motor cortex of adult rats following peripheral facial nerve lesions [J].
Laskawi, R ;
Rohlmann, A ;
Landgrebe, M ;
Wolff, JR .
EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 1997, 254 (02) :81-85
[9]  
MCDONALD CT, 1993, J NEUROSCI, V13, P768
[10]   FACTORS FORMING EDGE OF A RECEPTIVE FIELD - PRESENCE OF RELATIVELY INEFFECTIVE AFFERENT TERMINALS [J].
MERRILL, EG ;
WALL, PD .
JOURNAL OF PHYSIOLOGY-LONDON, 1972, 226 (03) :825-&