Binocular robot vision emulating disparity computation in the primary visual cortex

被引:17
作者
Shimonomura, Kazuhiro [1 ]
Kushima, Takayuki [2 ]
Yagi, Tetsuya [2 ]
机构
[1] Osaka Univ, Ctr Adv Med Engn & Informat, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Grad Sch Engn, Dept Elect Elect & Informat Engn, Suita, Osaka 5650871, Japan
关键词
neuromorphic engineering; analog VLSI; multi-chip; FPGA; disparity energy model;
D O I
10.1016/j.neunet.2007.12.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We designed a VLSI binocular vision system that emulates the disparity computation in the primary visual cortex (V I). The system consists of two silicon retinas, orientation chips, and field programmable gate array (FPGA), mimicking a hierarchical architecture of visual information processing in the disparity energy model. The silicon retinas emulate a Laplacian-Gaussian-like receptive field of the vertebrate retina. The orientation chips generate an orientation-selective receptive field by aggregating multiple pixels of the silicon retina, mimicking the Hubei-Wiesel-type feed-forward model in order to emulate a Gabor-like receptive field of simple cells. The FPGA receives Outputs from the orientation chips corresponding to the left and right eyes and calculates the responses of the complex cells based on the disparity energy model. The system can provide the responses of complex cells tuned to five different disparities and a disparity map obtained by comparing these energy Outputs. Owing to the combination of spatial filtering by analog parallel circuits and pixel-wise computation by hard-wired digital circuits, the present system call execute the disparity computation in real time using compact hardware. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 22 条
[1]   Neuromorphic implementation of orientation hypercolumns [J].
Choi, TYW ;
Merolla, PA ;
Arthur, JV ;
Boahen, KA ;
Shi, BE .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (06) :1049-1060
[2]   Responses of primary visual cortical neurons to binocular disparity without depth perception [J].
Cumming, BG ;
Parker, AJ .
NATURE, 1997, 389 (6648) :280-283
[3]   NEOCOGNITRON - A HIERARCHICAL NEURAL NETWORK CAPABLE OF VISUAL-PATTERN RECOGNITION [J].
FUKUSHIMA, K .
NEURAL NETWORKS, 1988, 1 (02) :119-130
[4]   RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN CATS VISUAL CORTEX [J].
HUBEL, DH ;
WIESEL, TN .
JOURNAL OF PHYSIOLOGY-LONDON, 1962, 160 (01) :106-&
[5]   Robotic vision - Neuromorphic vision sensors [J].
Indiveri, G ;
Douglas, F .
SCIENCE, 2000, 288 (5469) :1189-1190
[6]   THE TWO-DIMENSIONAL SPATIAL STRUCTURE OF SIMPLE RECEPTIVE-FIELDS IN CAT STRIATE CORTEX [J].
JONES, JP ;
PALMER, LA .
JOURNAL OF NEUROPHYSIOLOGY, 1987, 58 (06) :1187-1211
[7]   An analog VLSI chip emulating sustained and transient response channels of the vertebrate retina [J].
Kameda, S ;
Yagi, T .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (05) :1405-1412
[8]   PHYSIOLOGICAL AND MORPHOLOGICAL IDENTIFICATION OF HORIZONTAL, BIPOLAR AND AMACRINE CELLS IN GOLDFISH RETINA [J].
KANEKO, A .
JOURNAL OF PHYSIOLOGY-LONDON, 1970, 207 (03) :623-&
[9]   Orientation-selective aVLSI spiking neurons [J].
Liu, SC ;
Kramer, J ;
Indiveri, G ;
Delbrück, T ;
Burg, T ;
Douglas, R .
NEURAL NETWORKS, 2001, 14 (6-7) :629-643
[10]   NEUROMORPHIC ELECTRONIC SYSTEMS [J].
MEAD, C .
PROCEEDINGS OF THE IEEE, 1990, 78 (10) :1629-1636