Dynamical phase transitions in one-dimensional stochastic cellular automata

被引:2
作者
Blagoev, KB
Wille, LT
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA
关键词
D O I
10.1080/1478643031000119192
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the influence of dynamic noise and disorder on the evolution of a chaotic cellular automaton model. Three distinct phases are identified corresponding to ordered, random and damage spreading evolution. The time evolution of the associated order parameters is investigated and the critical exponents are calculated close to the phase transition.
引用
收藏
页码:835 / 841
页数:7
相关论文
共 20 条
[1]   On damage-spreading transitions [J].
Bagnoli, F .
JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (1-2) :151-164
[2]  
BAK P, 1996, HOW NATURE WORKS
[3]  
BLAGOEV KB, 1992, THESIS FLORIDA ALANT
[4]  
da Silva L. R., 1988, Complex Systems, V2, P29
[5]   RANDOM NETWORKS OF AUTOMATA - A SIMPLE ANNEALED APPROXIMATION [J].
DERRIDA, B ;
POMEAU, Y .
EUROPHYSICS LETTERS, 1986, 1 (02) :45-49
[6]   EQUIVALENCE OF CELLULAR AUTOMATA TO ISING-MODELS AND DIRECTED PERCOLATION [J].
DOMANY, E ;
KINZEL, W .
PHYSICAL REVIEW LETTERS, 1984, 53 (04) :311-314
[7]   GENERIC LONG-RANGE CORRELATIONS IN MOLECULAR FLUIDS [J].
DORFMAN, JR ;
KIRKPATRICK, TR ;
SENGERS, JV .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1994, 45 :213-239
[8]   ARE DAMAGE SPREADING TRANSITIONS GENERICALLY IN THE UNIVERSALITY CLASS OF DIRECTED PERCOLATION [J].
GRASSBERGER, P .
JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (1-2) :13-23
[9]   A NEW TYPE OF KINETIC CRITICAL PHENOMENON [J].
GRASSBERGER, P ;
KRAUSE, F ;
VONDERTWER, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (03) :L105-L109
[10]   An algorithm-independent definition of damage spreading - Application to directed percolation [J].
Hinrichsen, H ;
Weitz, JS ;
Domany, E .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) :617-636