The convergence analysis of inexact Gauss-Newton methods for nonlinear problems

被引:19
作者
Chen, Jinhai [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
nonlinear least squares problems; inexact Gauss-Newton methods; weak Lipschitz condition; convergence ball;
D O I
10.1007/s10589-007-9071-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, inexact Gauss-Newton methods for nonlinear least squares problems are studied. Under the hypothesis that derivative satisfies some kinds of weak Lipschitz conditions, the local convergence properties of inexact Gauss-Newton and inexact Gauss-Newton like methods for nonlinear problems are established with the modified relative residual control. The obtained results can provide an estimate of convergence ball for inexact Gauss-Newton methods.
引用
收藏
页码:97 / 118
页数:22
相关论文
共 22 条