Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis

被引:171
作者
Kokubu, M
Ishihama, Y
Sato, T
Nagasu, T
Oda, Y
机构
[1] Eisai & Co Ltd, Lab Seeds Finding Technol, Tsukuba, Ibaraki 3002635, Japan
[2] Univ Tsukuba, Grad Sch Med, Tsukuba, Ibaraki 3058575, Japan
关键词
D O I
10.1021/ac050404f
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We have developed a simple, highly specific enrichment procedure for phosphopeptides, by increasing the specificity of an immobilized metal affinity column (IMAC) without using any chemical reaction. The method employs a biphasic IMAC-C18 tip, in which INIAC beads are packed on an Empore C18 disk in a 200-mu L pipet tip. Phosphopeptides are separated from non-phosphopeptides on the INIAC in an optimized solvent without any chemical reaction, then desorbed from the INIAC using a phosphate buffer, reconcentrated, and desalted on the C 18 disk. The increase in selectivity was achieved by (a) using a strong acid to discriminate phosphates from carboxyl groups of peptides and (b) using a high concentration of acetonitrile to remove hydrophobic non-phosphopeptides. The entire procedure was optimized by using known phosphoproteins such as Akt1 kinase and protein kinase A. Although it was difficult to detect phosphopeptides in MALDI-MS spectra of tryptic peptide mixtures before enrichment, after the INIAC procedure, we could successfully detect phosphopeptides with almost no non-phosphopeptides. Next, we constructed an array of IMAC-IMAC/C18 tips, such that number of arrayed tips on a 96-well plate could easily be changed depending on the loading amount of sample. Applying this approach to mouse forebrain resulted in the identification of 162 phosphopeptides (166 phosphorylation sites) from 135 proteins using nano-LC/MS.
引用
收藏
页码:5144 / 5154
页数:11
相关论文
共 66 条
[1]   Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometry [J].
Adamczyk, M ;
Gebler, JC ;
Wu, J .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2001, 15 (16) :1481-1488
[2]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[3]   Dynamic identification of phosphopeptides using immobilized metal ion affinity chromatography enrichment, subsequent partial β-elimination/chemical tagging and matrix-assisted laser desorption/ionization mass spectrometric analysis [J].
Ahn, YH ;
Park, EJ ;
Cho, K ;
Kim, JY ;
Hal, SH ;
Ryu, SH ;
Yoo, JS .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2004, 18 (20) :2495-2501
[4]   ISOLATION OF PHOSPHOPROTEINS BY IMMOBILIZED METAL (FE-3+) AFFINITY-CHROMATOGRAPHY [J].
ANDERSSON, L ;
PORATH, J .
ANALYTICAL BIOCHEMISTRY, 1986, 154 (01) :250-254
[5]   A multidimensional electrospray MS-based approach to phosphopeptide mapping [J].
Annan, RS ;
Huddleston, MJ ;
Verma, R ;
Deshaies, RJ ;
Carr, SA .
ANALYTICAL CHEMISTRY, 2001, 73 (03) :393-404
[6]   Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors [J].
Ballif, BA ;
Roux, PP ;
Gerber, SA ;
MacKeigan, JP ;
Blenis, J ;
Gygi, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (03) :667-672
[7]   Phosphoproteomic analysis of the developing mouse brain [J].
Ballif, BA ;
Villén, J ;
Beausoleil, SA ;
Schwartz, D ;
Gygi, SP .
MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (11) :1093-1101
[8]   Large-scale characterization of HeLa cell nuclear phosphoproteins [J].
Beausoleil, SA ;
Jedrychowski, M ;
Schwartz, D ;
Elias, JE ;
Villén, J ;
Li, JX ;
Cohn, MA ;
Cantley, LC ;
Gygi, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (33) :12130-12135
[9]   Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics [J].
Blagoev, B ;
Ong, SE ;
Kratchmarova, I ;
Mann, M .
NATURE BIOTECHNOLOGY, 2004, 22 (09) :1139-1145
[10]   Signaling by protein phosphatases in the nucleus [J].
Bollen, M ;
Beullens, M .
TRENDS IN CELL BIOLOGY, 2002, 12 (03) :138-145