Postnatal development of pre- and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex

被引:97
作者
Cruz, DA
Eggan, SM
Lewis, DA
机构
[1] Univ Pittsburgh, Dept Psychiat, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Neurosci, Pittsburgh, PA 15213 USA
关键词
parvalbumin; GABA transporters; GABA(A) receptors;
D O I
10.1002/cne.10833
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The protracted postnatal maturation of the primate prefrontal cortex (PFC) is associated with substantial changes in the number of excitatory synapses on pyramidal neurons, whereas the total number of inhibitory synapses appears to remain constant. In this study, we sought to determine whether the developmental changes in excitatory input to pyramidal cells are paralleled by changes in functional markers of inhibitory inputs to pyramidal neurons. The chandelier subclass of gamma-aminobutyric acid (GABA) neurons provides potent inhibitory control over pyramidal neurons by virtue of their axon terminals, which form distinct vertical structures (termed cartridges) that synapse at the axon initial segment (AIS) of pyramidal neurons. Thus, we examined the relative densities, laminar distributions, and lengths of presynaptic chandelier axon cartridges immunoreactive for the GABA membrane transporter 1 (GAT1) or the calcium-binding protein parvalbumin (PV) and of postsynaptic pyramidal neuron AIS immunoreactive for the GABA(A) receptor alpha(2) subunit (GABA(A) alpha(2)) in PFC area 46 of 38 rhesus monkeys (Macaca mulatta). From birth through 2 years of age, the relative densities and laminar distributions of these three markers exhibited different trajectories, suggesting developmental shifts in the weighting of at least some factors that determine inhibition at the AIS. In contrast, from 2 to 4 years of age, all three markers exhibited similar declines in density and length that paralleled the periadolescent pruning of excitatory synapses to pyramidal neurons. Across development, the predominant laminar location of PV-Iabeled cartridges and GABA(A) alpha(2)-immunoreactive AIS shifted from the middle to superficial layers, whereas the laminar distribution of GAT1-positive cartridges did not change. Together, these findings suggest that the maturation of inhibitory inputs to the AIS of PFC pyramidal neurons is a complex process that may differentially affect the firing patterns of subpopulations of pyramidal neurons at specific postnatal time points. (C) 2003 Wiley-Liss, Inc.
引用
收藏
页码:385 / 400
页数:16
相关论文
共 78 条
[1]   GENE-EXPRESSION FOR GLUTAMIC-ACID DECARBOXYLASE IS REDUCED WITHOUT LOSS OF NEURONS IN PREFRONTAL CORTEX OF SCHIZOPHRENICS [J].
AKBARIAN, S ;
KIM, JJ ;
POTKIN, SG ;
HAGMAN, JO ;
TAFAZZOLI, A ;
BUNNEY, WE ;
JONES, EG .
ARCHIVES OF GENERAL PSYCHIATRY, 1995, 52 (04) :258-266
[2]   SYNCHRONOUS DEVELOPMENT OF PYRAMIDAL NEURON DENDRITIC SPINES AND PARVALBUMIN-IMMUNOREACTIVE CHANDELIER NEURON AXON TERMINALS IN LAYER-III OF MONKEY PREFRONTAL CORTEX [J].
ANDERSON, SA ;
CLASSEY, JD ;
CONDE, F ;
LUND, JS ;
LEWIS, DA .
NEUROSCIENCE, 1995, 67 (01) :7-22
[3]   Excitatory actions of GABA during development: The nature of the nurture [J].
Ben-Ari, Y .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (09) :728-739
[4]   IMMUNOCHEMICAL IDENTIFICATION OF THE ALPHA-1-SUBUNIT AND ALPHA-3-SUBUNIT OF THE GABA-A-RECEPTOR IN RAT-BRAIN [J].
BENKE, D ;
CICINSAIN, A ;
MERTENS, S ;
MOHLER, H .
JOURNAL OF RECEPTOR RESEARCH, 1991, 11 (1-4) :407-424
[5]   Gaba transporter heterogeneity: Pharmacology and cellular localization [J].
Borden, LA .
NEUROCHEMISTRY INTERNATIONAL, 1996, 29 (04) :335-356
[6]   SYNAPTOGENESIS IN THE PREFRONTAL CORTEX OF RHESUS-MONKEYS [J].
BOURGEOIS, JP ;
GOLDMANRAKIC, PS ;
RAKIC, P .
CEREBRAL CORTEX, 1994, 4 (01) :78-96
[7]   PARVALBUMIN IN MOST GAMMA-AMINOBUTYRIC-ACID CONTAINING NEURONS OF THE RAT CEREBRAL-CORTEX [J].
CELIO, MR .
SCIENCE, 1986, 231 (4741) :995-997
[8]   MONOCLONAL-ANTIBODIES DIRECTED AGAINST THE CALCIUM-BINDING PROTEIN PARVALBUMIN [J].
CELIO, MR ;
BAIER, W ;
SCHARER, L ;
DEVIRAGH, PA ;
GERDAY, C .
CELL CALCIUM, 1988, 9 (02) :81-86
[9]   SYNCHRONIZATION OF NEURONAL-ACTIVITY IN HIPPOCAMPUS BY INDIVIDUAL GABAERGIC INTERNEURONS [J].
COBB, SR ;
BUHL, EH ;
HALASY, K ;
PAULSEN, O ;
SOMOGYI, P .
NATURE, 1995, 378 (6552) :75-78
[10]   The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons [J].
Conde, F ;
Lund, JS ;
Lewis, DA .
DEVELOPMENTAL BRAIN RESEARCH, 1996, 96 (1-2) :261-276