Regulation of glucagon-like peptide-1 synthesis and secretion in the GLUTag enteroendocrine cell line

被引:131
作者
Brubaker, PL
Schloos, J
Drucker, DJ
机构
[1] Univ Toronto, Banting & Best Diabet Ctr, Toronto, ON M5S 1A8, Canada
[2] Toronto Hosp, Toronto, ON M5T 2S8, Canada
[3] Beiersdorf Lilly, Dept Pharmacol, LRL Lilly Res Labs, Hamburg, Germany
关键词
D O I
10.1210/en.139.10.4108
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Glucagon-like peptide-1 (GLP-1) released from the intestine is a potent stimulator of glucose-dependent insulin secretion. To elucidate the factors regulating GLP-1 secretion, we have studied the enteroendocrine GLUTag cell line. GLP-1 secretion was stimulated in a dose-dependent fashion by activation of protein kinase A or C with forskolin or phorbol 12,13-dibutyrate, respectively (by 2.3 +/- 0.5-fold at 100 mu M and 4.3 +/- 0.6-fold at 0.3 mu M, respectively; P < 0.01-0.001). Of the regulatory peptides tested, only glucose-dependent insulinotropic peptide stimulated the release of GLP-1 (by 2.3 +/- 0.2-fold at 0.1 mu M; P < 0.001); glucagon was without effect, and paradoxically, the inhibitory neuropeptide somatostatin-14 increased secretion slightly (by 1.6 +/- 0.3-fold at 0.01 mu M; P < 0.05). In tests of several neurotransmitters, only the cholinergic agonists carbachol and bethanechol stimulated peptide secretion in a dose-dependent fashion (by 2.3 +/- 0.5- and 1.7 +/- 0.3-fold at 1000 mu M; P < 0.06-0.001); the beta-adrenergic agonist isoproterenol and the chloride channel inhibitor gamma-aminobutyric acid did not affect release of GLP-1. Long chain monounsaturated fatty acids (18:1), but not saturated fatty acids (16:0), also stimulated the release of GLP-1 (by 1.7 +/- 0.1-fold at 150 mu M; P < 0.001). Consistent with the presence of a cAMP response element in the proglucagon gene, activation of the protein kinase A-dependent pathway with forskolin increased proglucagon messenger RNA transcript levels by 2-fold (P < 0.05); glucose-dependent insulinotropic peptide and phorbol 12,13-dibutyrate were without effect. Therefore, by comparison with results obtained using primary L cell cultures or in vivo models, GLUTag cells appear to respond appropriately to the regulatory mechanisms controlling intestinal GLP-1 secretion.
引用
收藏
页码:4108 / 4114
页数:7
相关论文
共 47 条