Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model

被引:104
作者
Goodale, CL [1 ]
Aber, JD [1 ]
Ollinger, SV [1 ]
机构
[1] Univ New Hampshire, Inst Study Earth Oceans & Space, Complex Syst Res Ctr, Durham, NH 03824 USA
关键词
interpolation; climate grids; DEM; GIS; regional modeling;
D O I
10.3354/cr010035
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A 1 km(2) resolution digital elevation model (DEM) of Ireland was constructed and used as the basis for generating digital maps of the climate parameters required to run a model of ecosystem carbon and water cycling. The DEM had mean absolute errors of 30 m or less for most of Ireland. The ecosystem model requires inputs of monthly precipitation, monthly averaged maximum and minimum daily temperature, and monthly averaged daily solar radiation. Long-term (1951 to 1980) averaged monthly data were obtained from sites measuring precipitation (618 sites), temperature (62 sites), and the number of hours of bright sunshine per day ('sunshine hours') (61 sites). Polynomial regression was used to derive a simple model for each monthly climate variable to relate climate to position and elevation on the DEM. Accuracy assessments with subsets of each climate data set determined that polynomial regression can predict average monthly climate in Ireland with mean absolute errors of 5 to 15 mm for monthly precipitation, 0.2 to 0.5 degrees C for monthly averaged maximum and minimum temperature, and 6 to 15 min for monthly averaged sunshine hours. The polynomial regression estimates of climate were compared with estimates from a modified inverse-distance-squared interpolation. Prediction accuracy did not differ between the 2 methods, but the polynomial regression models demanded less time to generate and less computer storage space, greatly decreasing the time required for regional modeling runs.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 51 条
[1]   A GENERALIZED, LUMPED-PARAMETER MODEL OF PHOTOSYNTHESIS, EVAPOTRANSPIRATION AND NET PRIMARY PRODUCTION IN TEMPERATE AND BOREAL FOREST ECOSYSTEMS [J].
ABER, JD ;
FEDERER, CA .
OECOLOGIA, 1992, 92 (04) :463-474
[2]   Predicting the effects of climate change on water yield and forest production in the northeastern United States [J].
Aber, JD ;
Ollinger, SV ;
Federer, CA ;
Reich, PB ;
Goulden, ML ;
Kicklighter, DW ;
Melillo, JM ;
Lathrop, RG .
CLIMATE RESEARCH, 1995, 5 (03) :207-222
[3]   A STRATEGY FOR THE REGIONAL-ANALYSIS OF THE EFFECTS OF PHYSICAL AND CHEMICAL CLIMATE-CHANGE ON BIOGEOCHEMICAL CYCLES IN NORTHEASTERN UNITED-STATES FORESTS [J].
ABER, JD ;
DRISCOLL, C ;
FEDERER, CA ;
LATHROP, R ;
LOVETT, G ;
MELILLO, JM ;
STEUDLER, P ;
VOGELMANN, J .
ECOLOGICAL MODELLING, 1993, 67 (01) :37-47
[4]  
Angstrom A.S., 1924, Solar and Terrestrial Radiation Meteorological Society, V50, P121, DOI DOI 10.1002/QJ.49705021008
[5]   IDENTIFICATION AND CALIBRATION OF SPATIAL CORRELATION PATTERNS OF RAINFALL [J].
BACCHI, B ;
KOTTEGODA, NT .
JOURNAL OF HYDROLOGY, 1995, 165 (1-4) :311-348
[6]  
*BELF MET OFF, 1988, CLIMATOL MEM, V143
[7]   A COMPUTER-MODEL OF THE SOLAR-RADIATION, SOIL-MOISTURE, AND SOIL THERMAL REGIMES IN BOREAL FORESTS [J].
BONAN, GB .
ECOLOGICAL MODELLING, 1989, 45 (04) :275-306
[8]   ON THE RELATIONSHIP BETWEEN INCOMING SOLAR-RADIATION AND DAILY MAXIMUM AND MINIMUM TEMPERATURE [J].
BRISTOW, KL ;
CAMPBELL, GS .
AGRICULTURAL AND FOREST METEOROLOGY, 1984, 31 (02) :159-166
[9]   CALCULATING SOLAR-RADIATION FOR ECOLOGICAL-STUDIES [J].
BROCK, TD .
ECOLOGICAL MODELLING, 1981, 14 (1-2) :1-19
[10]   REGIONAL MODELING OF GRASSLAND BIOGEOCHEMISTRY USING GIS [J].
BURKE, IC ;
SCHIMEL, DS ;
YONKER, CM ;
PARTON, WJ ;
JOYCE, LA ;
LAUENROTH, WK .
LANDSCAPE ECOLOGY, 1990, 4 (01) :45-54