Positive feedback, stochasticity and genetic competence

被引:52
作者
Karmakar, Rajesh [1 ]
Bose, Indrani [1 ]
机构
[1] Bose Inst, Dept Phys, Kolkata 700009, India
关键词
D O I
10.1088/1478-3975/4/1/004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A single gene, regulating its own expression via a positive feedback loop, constitutes a common motif in gene regulatory networks and signalling cascades. Recent experiments on the development of competence in the bacterial population B. subtilis show that the autoregulatory genetic module by itself can give rise to two types of cellular states. The states correspond to the low and high expression states of the master regulator ComK. The high expression state is attained when the ComK protein level exceeds a threshold value leading to a full activation of the autostimulatory loop. Stochasticity in gene expression drives the transitions between the two stable states. In this paper, we explain the appearance of bimodal protein distributions in B. subtilis cell population in the framework of three possible scenarios. In two of the cases, bistability provides the basis for binary gene expression. In the third case, the system is monostable in a deterministic description and stochasticity in gene expression is solely responsible for the appearance of the two expression states.
引用
收藏
页码:29 / 37
页数:9
相关论文
共 31 条
[1]  
[Anonymous], 2019, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
[2]   Positive feedback in eukaryotic gene networks:: cell differentiation by graded to binary response conversion [J].
Becskei, A ;
Séraphin, B ;
Serrano, L .
EMBO JOURNAL, 2001, 20 (10) :2528-2535
[3]   Phenotypic consequences of promoter-mediated transcriptional noise [J].
Blake, William J. ;
Balazsi, Gbor ;
Kohanski, Michael A. ;
Isaacs, Farren J. ;
Murphy, Kevin F. ;
Kuang, Yina ;
Cantor, Charles R. ;
Walt, David R. ;
Collins, James J. .
MOLECULAR CELL, 2006, 24 (06) :853-865
[4]   Noise in eukaryotic gene expression [J].
Blake, WJ ;
Kærn, M ;
Cantor, CR ;
Collins, JJ .
NATURE, 2003, 422 (6932) :633-637
[5]   Stochastic protein expression in individual cells at the single molecule level [J].
Cai, L ;
Friedman, N ;
Xie, XS .
NATURE, 2006, 440 (7082) :358-362
[6]   Modeling stochastic gene expression: Implications for haploinsufficiency [J].
Cook, DL ;
Gerber, LN ;
Tapscott, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15641-15646
[7]   Bistability in bacteria [J].
Dubnau, David ;
Losick, Richard .
MOLECULAR MICROBIOLOGY, 2006, 61 (03) :564-572
[8]   Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability [J].
Ferrell, JE .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (02) :140-148
[9]   EXACT STOCHASTIC SIMULATION OF COUPLED CHEMICAL-REACTIONS [J].
GILLESPIE, DT .
JOURNAL OF PHYSICAL CHEMISTRY, 1977, 81 (25) :2340-2361
[10]   Real-time kinetics of gene activity in individual bacteria [J].
Golding, I ;
Paulsson, J ;
Zawilski, SM ;
Cox, EC .
CELL, 2005, 123 (06) :1025-1036