Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer

被引:383
作者
Gulde, S
Riebe, M
Lancaster, GPT
Becher, C
Eschner, J
Häffner, H
Schmidt-Kaler, F
Chuang, IL
Blatt, R
机构
[1] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[2] MIT, Media Lab, Cambridge, MA 02139 USA
关键词
D O I
10.1038/nature01336
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Determining classically whether a coin is fair (head on one side, tail on the other) or fake (heads or tails on both sides) requires an examination of each side. However, the analogous quantum procedure (the Deutsch-Jozsa algorithm(1,2)) requires just one examination step. The Deutsch-Jozsa algorithm has been realized experimentally using bulk nuclear magnetic resonance techniques(3,4), employing nuclear spins as quantum bits (qubits). In contrast, the ion trap processor utilises(5) motional and electronic quantum states of individual atoms as qubits, and in principle is easier to scale to many qubits. Experimental advances in the latter area include the realization of a two-qubit quantum gate(6), the entanglement of four ions(7), quantum state engineering(8) and entanglement-enhanced phase estimation(9). Here we exploit techniques(10,11) developed for nuclear magnetic resonance to implement the Deutsch-Jozsa algorithm on an ion-trap quantum processor, using as qubits the electronic and motional states of a single calcium ion. Our ion-based implementation of a full quantum algorithm serves to demonstrate experimental procedures with the quality and precision required for complex computations, confirming the potential of trapped ions for quantum computation.
引用
收藏
页码:48 / 50
页数:3
相关论文
共 22 条
[1]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[2]  
Childs AM, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.012306
[3]   Experimental realization of a quantum algorithm [J].
Chuang, IL ;
Vandersypen, LMK ;
Zhou, XL ;
Leung, DW ;
Lloyd, S .
NATURE, 1998, 393 (6681) :143-146
[4]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[5]  
DEHMELT H, 1975, B AM PHYS SOC, V20, P60
[6]   RAPID SOLUTION OF PROBLEMS BY QUANTUM COMPUTATION [J].
DEUTSCH, D ;
JOZSA, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 439 (1907) :553-558
[7]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117
[8]   Light interference from single atoms and their mirror images [J].
Eschner, J ;
Raab, C ;
Schmidt-Kaler, F ;
Blatt, R .
NATURE, 2001, 413 (6855) :495-498
[9]   A single ion as a nanoscopic probe of an optical field [J].
Guthöhrlein, GR ;
Keller, M ;
Hayasaka, K ;
Lange, W ;
Walther, H .
NATURE, 2001, 414 (6859) :49-51
[10]  
HAFFNER H, 2002, PRECISION MEASUREMEN