Distributed Detection via Gaussian Running Consensus: Large Deviations Asymptotic Analysis

被引:78
作者
Bajovic, Dragana [1 ,2 ]
Jakovetic, Dusan [1 ,2 ]
Xavier, Joao [1 ]
Sinopoli, Bruno [2 ]
Moura, Jose M. F. [2 ]
机构
[1] Univ Tecn Lisbon, Inst Super Tecn IST, Inst Syst & Robot ISR, P-1049001 Lisbon, Portugal
[2] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
Chernoff information; distributed detection; information flow; large deviations; random network; running consensus; SENSOR NETWORKS; DECENTRALIZED DETECTION; GOSSIP ALGORITHMS; MULTIPLE SENSORS; TOPOLOGY; SQUARES;
D O I
10.1109/TSP.2011.2157147
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study, by large deviations analysis, the asymptotic performance of Gaussian running consensus distributed detection over random networks; in other words, we determine the exponential decay rate of the detection error probability. With running consensus, at each time step, each sensor averages its decision variable with the neighbors' decision variables and accounts on-the-fly for its new observation. We show that: 1) when the rate of network information flow (the speed of averaging) is above a threshold, then Gaussian running consensus is asymptotically equivalent to the optimal centralized detector, i.e., the exponential decay rate of the error probability for running consensus equals the Chernoff information; and 2) when the rate of information flow is below a threshold, running consensus achieves only a fraction of the Chernoff information rate. We quantify this achievable rate as a function of the network rate of information flow. Simulation examples demonstrate our theoretical findings on the behavior of running consensus detection over random networks.
引用
收藏
页码:4381 / 4396
页数:16
相关论文
共 25 条
[1]   Detection in sensor networks: The saddlepoint approximation [J].
Aldosari, Saeed A. ;
Moura, Jose M. F. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (01) :327-340
[2]  
[Anonymous], 1993, Large deviations techniques and applications
[3]  
[Anonymous], P IEEE 10 IEEE INT W
[4]  
BAJOVIC D, 2010, 48 ALL C COMM CONTR
[5]   Distributed detection with multiple sensors .2. Advanced topics [J].
Blum, RS ;
Kassam, SA ;
Poor, HV .
PROCEEDINGS OF THE IEEE, 1997, 85 (01) :64-79
[6]   Randomized gossip algorithms [J].
Boyd, Stephen ;
Ghosh, Arpita ;
Prabhakar, Balaji ;
Shah, Devavrat .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (06) :2508-2530
[7]   Enforcing consensus while monitoring the environment in Wireless Sensor Networks [J].
Braca, Paolo ;
Marano, Stefano ;
Matta, Vincenzo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) :3375-3380
[8]   Asymptotic Optimality of Running Consensus in Testing Binary Hypotheses [J].
Braca, Paolo ;
Marano, Stefano ;
Matta, Vincenzo ;
Willett, Peter .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (02) :814-825
[9]   Distributed Detection Over Adaptive Networks Using Diffusion Adaptation [J].
Cattivelli, Federico S. ;
Sayed, Ali H. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (05) :1917-1932
[10]   Diffusion LMS Strategies for Distributed Estimation [J].
Cattivelli, Federico S. ;
Sayed, Ali H. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) :1035-1048